| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frn |
|- ( B : E --> F -> ran B C_ F ) |
| 2 |
1
|
3ad2ant2 |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ran B C_ F ) |
| 3 |
|
sslin |
|- ( ran B C_ F -> ( dom A i^i ran B ) C_ ( dom A i^i F ) ) |
| 4 |
2 3
|
syl |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i ran B ) C_ ( dom A i^i F ) ) |
| 5 |
|
fdm |
|- ( A : C --> D -> dom A = C ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> dom A = C ) |
| 7 |
6
|
ineq1d |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i F ) = ( C i^i F ) ) |
| 8 |
|
simp3 |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( C i^i F ) = (/) ) |
| 9 |
7 8
|
eqtrd |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i F ) = (/) ) |
| 10 |
4 9
|
sseqtrd |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i ran B ) C_ (/) ) |
| 11 |
|
ss0 |
|- ( ( dom A i^i ran B ) C_ (/) -> ( dom A i^i ran B ) = (/) ) |
| 12 |
10 11
|
syl |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i ran B ) = (/) ) |
| 13 |
12
|
coemptyd |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( A o. B ) = (/) ) |