| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frn |  |-  ( B : E --> F -> ran B C_ F ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ran B C_ F ) | 
						
							| 3 |  | sslin |  |-  ( ran B C_ F -> ( dom A i^i ran B ) C_ ( dom A i^i F ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i ran B ) C_ ( dom A i^i F ) ) | 
						
							| 5 |  | fdm |  |-  ( A : C --> D -> dom A = C ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> dom A = C ) | 
						
							| 7 | 6 | ineq1d |  |-  ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i F ) = ( C i^i F ) ) | 
						
							| 8 |  | simp3 |  |-  ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( C i^i F ) = (/) ) | 
						
							| 9 | 7 8 | eqtrd |  |-  ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i F ) = (/) ) | 
						
							| 10 | 4 9 | sseqtrd |  |-  ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i ran B ) C_ (/) ) | 
						
							| 11 |  | ss0 |  |-  ( ( dom A i^i ran B ) C_ (/) -> ( dom A i^i ran B ) = (/) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i ran B ) = (/) ) | 
						
							| 13 | 12 | coemptyd |  |-  ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( A o. B ) = (/) ) |