Step |
Hyp |
Ref |
Expression |
1 |
|
frn |
|- ( B : E --> F -> ran B C_ F ) |
2 |
1
|
3ad2ant2 |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ran B C_ F ) |
3 |
|
sslin |
|- ( ran B C_ F -> ( dom A i^i ran B ) C_ ( dom A i^i F ) ) |
4 |
2 3
|
syl |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i ran B ) C_ ( dom A i^i F ) ) |
5 |
|
fdm |
|- ( A : C --> D -> dom A = C ) |
6 |
5
|
3ad2ant1 |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> dom A = C ) |
7 |
6
|
ineq1d |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i F ) = ( C i^i F ) ) |
8 |
|
simp3 |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( C i^i F ) = (/) ) |
9 |
7 8
|
eqtrd |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i F ) = (/) ) |
10 |
4 9
|
sseqtrd |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i ran B ) C_ (/) ) |
11 |
|
ss0 |
|- ( ( dom A i^i ran B ) C_ (/) -> ( dom A i^i ran B ) = (/) ) |
12 |
10 11
|
syl |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( dom A i^i ran B ) = (/) ) |
13 |
12
|
coemptyd |
|- ( ( A : C --> D /\ B : E --> F /\ ( C i^i F ) = (/) ) -> ( A o. B ) = (/) ) |