| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) | 
						
							| 2 |  | 1zzd |  |-  ( ( A e. NN /\ ( B e. NN0 /\ A <_ B ) ) -> 1 e. ZZ ) | 
						
							| 3 |  | nn0z |  |-  ( B e. NN0 -> B e. ZZ ) | 
						
							| 4 | 3 | ad2antrl |  |-  ( ( A e. NN /\ ( B e. NN0 /\ A <_ B ) ) -> B e. ZZ ) | 
						
							| 5 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. NN /\ ( B e. NN0 /\ A <_ B ) ) -> A e. ZZ ) | 
						
							| 7 |  | nnge1 |  |-  ( A e. NN -> 1 <_ A ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. NN /\ ( B e. NN0 /\ A <_ B ) ) -> 1 <_ A ) | 
						
							| 9 |  | simprr |  |-  ( ( A e. NN /\ ( B e. NN0 /\ A <_ B ) ) -> A <_ B ) | 
						
							| 10 | 2 4 6 8 9 | elfzd |  |-  ( ( A e. NN /\ ( B e. NN0 /\ A <_ B ) ) -> A e. ( 1 ... B ) ) | 
						
							| 11 |  | fzsplit |  |-  ( A e. ( 1 ... B ) -> ( 1 ... B ) = ( ( 1 ... A ) u. ( ( A + 1 ) ... B ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( A e. NN /\ ( B e. NN0 /\ A <_ B ) ) -> ( 1 ... B ) = ( ( 1 ... A ) u. ( ( A + 1 ) ... B ) ) ) | 
						
							| 13 |  | uncom |  |-  ( ( 1 ... A ) u. ( ( A + 1 ) ... B ) ) = ( ( ( A + 1 ) ... B ) u. ( 1 ... A ) ) | 
						
							| 14 |  | oveq1 |  |-  ( A = 0 -> ( A + 1 ) = ( 0 + 1 ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( A = 0 /\ ( B e. NN0 /\ A <_ B ) ) -> ( A + 1 ) = ( 0 + 1 ) ) | 
						
							| 16 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( ( A = 0 /\ ( B e. NN0 /\ A <_ B ) ) -> ( A + 1 ) = 1 ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( A = 0 /\ ( B e. NN0 /\ A <_ B ) ) -> ( ( A + 1 ) ... B ) = ( 1 ... B ) ) | 
						
							| 19 |  | oveq2 |  |-  ( A = 0 -> ( 1 ... A ) = ( 1 ... 0 ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( A = 0 /\ ( B e. NN0 /\ A <_ B ) ) -> ( 1 ... A ) = ( 1 ... 0 ) ) | 
						
							| 21 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 22 | 20 21 | eqtrdi |  |-  ( ( A = 0 /\ ( B e. NN0 /\ A <_ B ) ) -> ( 1 ... A ) = (/) ) | 
						
							| 23 | 18 22 | uneq12d |  |-  ( ( A = 0 /\ ( B e. NN0 /\ A <_ B ) ) -> ( ( ( A + 1 ) ... B ) u. ( 1 ... A ) ) = ( ( 1 ... B ) u. (/) ) ) | 
						
							| 24 |  | un0 |  |-  ( ( 1 ... B ) u. (/) ) = ( 1 ... B ) | 
						
							| 25 | 23 24 | eqtrdi |  |-  ( ( A = 0 /\ ( B e. NN0 /\ A <_ B ) ) -> ( ( ( A + 1 ) ... B ) u. ( 1 ... A ) ) = ( 1 ... B ) ) | 
						
							| 26 | 13 25 | eqtr2id |  |-  ( ( A = 0 /\ ( B e. NN0 /\ A <_ B ) ) -> ( 1 ... B ) = ( ( 1 ... A ) u. ( ( A + 1 ) ... B ) ) ) | 
						
							| 27 | 12 26 | jaoian |  |-  ( ( ( A e. NN \/ A = 0 ) /\ ( B e. NN0 /\ A <_ B ) ) -> ( 1 ... B ) = ( ( 1 ... A ) u. ( ( A + 1 ) ... B ) ) ) | 
						
							| 28 | 27 | ex |  |-  ( ( A e. NN \/ A = 0 ) -> ( ( B e. NN0 /\ A <_ B ) -> ( 1 ... B ) = ( ( 1 ... A ) u. ( ( A + 1 ) ... B ) ) ) ) | 
						
							| 29 | 1 28 | sylbi |  |-  ( A e. NN0 -> ( ( B e. NN0 /\ A <_ B ) -> ( 1 ... B ) = ( ( 1 ... A ) u. ( ( A + 1 ) ... B ) ) ) ) | 
						
							| 30 | 29 | 3impib |  |-  ( ( A e. NN0 /\ B e. NN0 /\ A <_ B ) -> ( 1 ... B ) = ( ( 1 ... A ) u. ( ( A + 1 ) ... B ) ) ) |