| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝐴  ∈  ℕ0  ↔  ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 ) ) | 
						
							| 2 |  | 1zzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  1  ∈  ℤ ) | 
						
							| 3 |  | nn0z | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℤ ) | 
						
							| 4 | 3 | ad2antrl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  𝐵  ∈  ℤ ) | 
						
							| 5 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  𝐴  ∈  ℤ ) | 
						
							| 7 |  | nnge1 | ⊢ ( 𝐴  ∈  ℕ  →  1  ≤  𝐴 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  1  ≤  𝐴 ) | 
						
							| 9 |  | simprr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 10 | 2 4 6 8 9 | elfzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  𝐴  ∈  ( 1 ... 𝐵 ) ) | 
						
							| 11 |  | fzsplit | ⊢ ( 𝐴  ∈  ( 1 ... 𝐵 )  →  ( 1 ... 𝐵 )  =  ( ( 1 ... 𝐴 )  ∪  ( ( 𝐴  +  1 ) ... 𝐵 ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( 1 ... 𝐵 )  =  ( ( 1 ... 𝐴 )  ∪  ( ( 𝐴  +  1 ) ... 𝐵 ) ) ) | 
						
							| 13 |  | uncom | ⊢ ( ( 1 ... 𝐴 )  ∪  ( ( 𝐴  +  1 ) ... 𝐵 ) )  =  ( ( ( 𝐴  +  1 ) ... 𝐵 )  ∪  ( 1 ... 𝐴 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  =  0  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 16 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( ( 𝐴  =  0  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴  +  1 )  =  1 ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( 𝐴  =  0  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( ( 𝐴  +  1 ) ... 𝐵 )  =  ( 1 ... 𝐵 ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝐴  =  0  →  ( 1 ... 𝐴 )  =  ( 1 ... 0 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐴  =  0  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( 1 ... 𝐴 )  =  ( 1 ... 0 ) ) | 
						
							| 21 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 22 | 20 21 | eqtrdi | ⊢ ( ( 𝐴  =  0  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( 1 ... 𝐴 )  =  ∅ ) | 
						
							| 23 | 18 22 | uneq12d | ⊢ ( ( 𝐴  =  0  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( ( ( 𝐴  +  1 ) ... 𝐵 )  ∪  ( 1 ... 𝐴 ) )  =  ( ( 1 ... 𝐵 )  ∪  ∅ ) ) | 
						
							| 24 |  | un0 | ⊢ ( ( 1 ... 𝐵 )  ∪  ∅ )  =  ( 1 ... 𝐵 ) | 
						
							| 25 | 23 24 | eqtrdi | ⊢ ( ( 𝐴  =  0  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( ( ( 𝐴  +  1 ) ... 𝐵 )  ∪  ( 1 ... 𝐴 ) )  =  ( 1 ... 𝐵 ) ) | 
						
							| 26 | 13 25 | eqtr2id | ⊢ ( ( 𝐴  =  0  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( 1 ... 𝐵 )  =  ( ( 1 ... 𝐴 )  ∪  ( ( 𝐴  +  1 ) ... 𝐵 ) ) ) | 
						
							| 27 | 12 26 | jaoian | ⊢ ( ( ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 )  ∧  ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 ) )  →  ( 1 ... 𝐵 )  =  ( ( 1 ... 𝐴 )  ∪  ( ( 𝐴  +  1 ) ... 𝐵 ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 )  →  ( ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 )  →  ( 1 ... 𝐵 )  =  ( ( 1 ... 𝐴 )  ∪  ( ( 𝐴  +  1 ) ... 𝐵 ) ) ) ) | 
						
							| 29 | 1 28 | sylbi | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( 𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 )  →  ( 1 ... 𝐵 )  =  ( ( 1 ... 𝐴 )  ∪  ( ( 𝐴  +  1 ) ... 𝐵 ) ) ) ) | 
						
							| 30 | 29 | 3impib | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝐴  ≤  𝐵 )  →  ( 1 ... 𝐵 )  =  ( ( 1 ... 𝐴 )  ∪  ( ( 𝐴  +  1 ) ... 𝐵 ) ) ) |