| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
| 2 |
|
1zzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 1 ∈ ℤ ) |
| 3 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
| 4 |
3
|
ad2antrl |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 ∈ ℤ ) |
| 5 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ∈ ℤ ) |
| 7 |
|
nnge1 |
⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 1 ≤ 𝐴 ) |
| 9 |
|
simprr |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
| 10 |
2 4 6 8 9
|
elfzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ∈ ( 1 ... 𝐵 ) ) |
| 11 |
|
fzsplit |
⊢ ( 𝐴 ∈ ( 1 ... 𝐵 ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |
| 13 |
|
uncom |
⊢ ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( ( ( 𝐴 + 1 ) ... 𝐵 ) ∪ ( 1 ... 𝐴 ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 + 1 ) = ( 0 + 1 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 + 1 ) = ( 0 + 1 ) ) |
| 16 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 17 |
15 16
|
eqtrdi |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 + 1 ) = 1 ) |
| 18 |
17
|
oveq1d |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( ( 𝐴 + 1 ) ... 𝐵 ) = ( 1 ... 𝐵 ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝐴 = 0 → ( 1 ... 𝐴 ) = ( 1 ... 0 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐴 ) = ( 1 ... 0 ) ) |
| 21 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 22 |
20 21
|
eqtrdi |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐴 ) = ∅ ) |
| 23 |
18 22
|
uneq12d |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( ( ( 𝐴 + 1 ) ... 𝐵 ) ∪ ( 1 ... 𝐴 ) ) = ( ( 1 ... 𝐵 ) ∪ ∅ ) ) |
| 24 |
|
un0 |
⊢ ( ( 1 ... 𝐵 ) ∪ ∅ ) = ( 1 ... 𝐵 ) |
| 25 |
23 24
|
eqtrdi |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( ( ( 𝐴 + 1 ) ... 𝐵 ) ∪ ( 1 ... 𝐴 ) ) = ( 1 ... 𝐵 ) ) |
| 26 |
13 25
|
eqtr2id |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |
| 27 |
12 26
|
jaoian |
⊢ ( ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |
| 28 |
27
|
ex |
⊢ ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) → ( ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) ) |
| 29 |
1 28
|
sylbi |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) ) |
| 30 |
29
|
3impib |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |