Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
2 |
|
1zzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 1 ∈ ℤ ) |
3 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
4 |
3
|
ad2antrl |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 ∈ ℤ ) |
5 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ∈ ℤ ) |
7 |
|
nnge1 |
⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 1 ≤ 𝐴 ) |
9 |
|
simprr |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
10 |
2 4 6 8 9
|
elfzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ∈ ( 1 ... 𝐵 ) ) |
11 |
|
fzsplit |
⊢ ( 𝐴 ∈ ( 1 ... 𝐵 ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |
13 |
|
uncom |
⊢ ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( ( ( 𝐴 + 1 ) ... 𝐵 ) ∪ ( 1 ... 𝐴 ) ) |
14 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 + 1 ) = ( 0 + 1 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 + 1 ) = ( 0 + 1 ) ) |
16 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
17 |
15 16
|
eqtrdi |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 + 1 ) = 1 ) |
18 |
17
|
oveq1d |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( ( 𝐴 + 1 ) ... 𝐵 ) = ( 1 ... 𝐵 ) ) |
19 |
|
oveq2 |
⊢ ( 𝐴 = 0 → ( 1 ... 𝐴 ) = ( 1 ... 0 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐴 ) = ( 1 ... 0 ) ) |
21 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
22 |
20 21
|
eqtrdi |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐴 ) = ∅ ) |
23 |
18 22
|
uneq12d |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( ( ( 𝐴 + 1 ) ... 𝐵 ) ∪ ( 1 ... 𝐴 ) ) = ( ( 1 ... 𝐵 ) ∪ ∅ ) ) |
24 |
|
un0 |
⊢ ( ( 1 ... 𝐵 ) ∪ ∅ ) = ( 1 ... 𝐵 ) |
25 |
23 24
|
eqtrdi |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( ( ( 𝐴 + 1 ) ... 𝐵 ) ∪ ( 1 ... 𝐴 ) ) = ( 1 ... 𝐵 ) ) |
26 |
13 25
|
eqtr2id |
⊢ ( ( 𝐴 = 0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |
27 |
12 26
|
jaoian |
⊢ ( ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |
28 |
27
|
ex |
⊢ ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) → ( ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) ) |
29 |
1 28
|
sylbi |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) ) |
30 |
29
|
3impib |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... 𝐵 ) = ( ( 1 ... 𝐴 ) ∪ ( ( 𝐴 + 1 ) ... 𝐵 ) ) ) |