Metamath Proof Explorer


Theorem colineartriv2

Description: Trivial case of colinearity. (Contributed by Scott Fenton, 18-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion colineartriv2 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 Colinear ⟨ 𝐵 , 𝐵 ⟩ )

Proof

Step Hyp Ref Expression
1 btwntriv1 ( ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 Btwn ⟨ 𝐵 , 𝐴 ⟩ )
2 1 3mix2d ( ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 Btwn ⟨ 𝐵 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) )
3 2 3com23 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 Btwn ⟨ 𝐵 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) )
4 simp1 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ )
5 simp2 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
6 simp3 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
7 brcolinear ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐵 ⟩ ↔ ( 𝐴 Btwn ⟨ 𝐵 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) )
8 4 5 6 6 7 syl13anc ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐵 ⟩ ↔ ( 𝐴 Btwn ⟨ 𝐵 , 𝐵 ⟩ ∨ 𝐵 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∨ 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) )
9 3 8 mpbird ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 Colinear ⟨ 𝐵 , 𝐵 ⟩ )