| Step | Hyp | Ref | Expression | 
						
							| 1 |  | btwntriv1 |  |-  ( ( N e. NN /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> B Btwn <. B , A >. ) | 
						
							| 2 | 1 | 3mix2d |  |-  ( ( N e. NN /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> ( A Btwn <. B , B >. \/ B Btwn <. B , A >. \/ B Btwn <. A , B >. ) ) | 
						
							| 3 | 2 | 3com23 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A Btwn <. B , B >. \/ B Btwn <. B , A >. \/ B Btwn <. A , B >. ) ) | 
						
							| 4 |  | simp1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 5 |  | simp2 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 6 |  | simp3 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 7 |  | brcolinear |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Colinear <. B , B >. <-> ( A Btwn <. B , B >. \/ B Btwn <. B , A >. \/ B Btwn <. A , B >. ) ) ) | 
						
							| 8 | 4 5 6 6 7 | syl13anc |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A Colinear <. B , B >. <-> ( A Btwn <. B , B >. \/ B Btwn <. B , A >. \/ B Btwn <. A , B >. ) ) ) | 
						
							| 9 | 3 8 | mpbird |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A Colinear <. B , B >. ) |