| Step | Hyp | Ref | Expression | 
						
							| 1 |  | copsex2b.xph | ⊢ ( 𝜑  →  ∀ 𝑥 𝜑 ) | 
						
							| 2 |  | copsex2b.yph | ⊢ ( 𝜑  →  ∀ 𝑦 𝜑 ) | 
						
							| 3 |  | copsex2b.xch | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜒 ) | 
						
							| 4 |  | copsex2b.ych | ⊢ ( 𝜑  →  Ⅎ 𝑦 𝜒 ) | 
						
							| 5 |  | copsex2b.is | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 6 |  | eqcom | ⊢ ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ↔  〈 𝑥 ,  𝑦 〉  =  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 7 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 8 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 9 | 7 8 | opth | ⊢ ( 〈 𝑥 ,  𝑦 〉  =  〈 𝐴 ,  𝐵 〉  ↔  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) ) | 
						
							| 10 | 6 9 | bitri | ⊢ ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ↔  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) ) | 
						
							| 11 |  | eqvisset | ⊢ ( 𝑥  =  𝐴  →  𝐴  ∈  V ) | 
						
							| 12 |  | eqvisset | ⊢ ( 𝑦  =  𝐵  →  𝐵  ∈  V ) | 
						
							| 13 | 11 12 | anim12i | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 14 | 10 13 | sylbi | ⊢ ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  𝜓 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 16 | 15 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  𝜓 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 17 | 16 | anim2i | ⊢ ( ( 𝜑  ∧  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  𝜓 ) )  →  ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 18 |  | simpl | ⊢ ( ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  ∧  𝜒 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 19 | 18 | anim2i | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  ∧  𝜒 ) )  →  ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 20 |  | ax-5 | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ∀ 𝑥 ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 21 | 1 20 | hban | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  ∀ 𝑥 ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 22 |  | ax-5 | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ∀ 𝑦 ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 23 | 2 22 | hban | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  ∀ 𝑦 ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 24 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  Ⅎ 𝑥 𝜒 ) | 
						
							| 25 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  Ⅎ 𝑦 𝜒 ) | 
						
							| 26 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  𝐴  ∈  V ) | 
						
							| 27 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  𝐵  ∈  V ) | 
						
							| 28 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 29 | 21 23 24 25 26 27 28 | copsex2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  𝜓 )  ↔  𝜒 ) ) | 
						
							| 30 |  | ibar | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝜒  ↔  ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  ∧  𝜒 ) ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  ( 𝜒  ↔  ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  ∧  𝜒 ) ) ) | 
						
							| 32 | 29 31 | bitrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  𝜓 )  ↔  ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  ∧  𝜒 ) ) ) | 
						
							| 33 | 17 19 32 | pm5.21nd | ⊢ ( 𝜑  →  ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  𝜓 )  ↔  ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  ∧  𝜒 ) ) ) |