Metamath Proof Explorer


Theorem copsex2b

Description: Biconditional form of copsex2d . TODO: prove a relative version, that is, with E. x e. V E. y e. W ... ( A e. V /\ B e. W ) . (Contributed by BJ, 27-Dec-2023)

Ref Expression
Hypotheses copsex2b.xph ( 𝜑 → ∀ 𝑥 𝜑 )
copsex2b.yph ( 𝜑 → ∀ 𝑦 𝜑 )
copsex2b.xch ( 𝜑 → Ⅎ 𝑥 𝜒 )
copsex2b.ych ( 𝜑 → Ⅎ 𝑦 𝜒 )
copsex2b.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion copsex2b ( 𝜑 → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 copsex2b.xph ( 𝜑 → ∀ 𝑥 𝜑 )
2 copsex2b.yph ( 𝜑 → ∀ 𝑦 𝜑 )
3 copsex2b.xch ( 𝜑 → Ⅎ 𝑥 𝜒 )
4 copsex2b.ych ( 𝜑 → Ⅎ 𝑦 𝜒 )
5 copsex2b.is ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
6 eqcom ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 opth ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
10 6 9 bitri ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
11 eqvisset ( 𝑥 = 𝐴𝐴 ∈ V )
12 eqvisset ( 𝑦 = 𝐵𝐵 ∈ V )
13 11 12 anim12i ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
14 10 13 sylbi ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
15 14 adantr ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
16 15 exlimivv ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
17 16 anim2i ( ( 𝜑 ∧ ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) → ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
18 simpl ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
19 18 anim2i ( ( 𝜑 ∧ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) → ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
20 ax-5 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∀ 𝑥 ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
21 1 20 hban ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ∀ 𝑥 ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
22 ax-5 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∀ 𝑦 ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
23 2 22 hban ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ∀ 𝑦 ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
24 3 adantr ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → Ⅎ 𝑥 𝜒 )
25 4 adantr ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → Ⅎ 𝑦 𝜒 )
26 simprl ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → 𝐴 ∈ V )
27 simprr ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → 𝐵 ∈ V )
28 5 adantlr ( ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
29 21 23 24 25 26 27 28 copsex2d ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ 𝜒 ) )
30 ibar ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝜒 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) )
31 30 adantl ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ( 𝜒 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) )
32 29 31 bitrd ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) )
33 17 19 32 pm5.21nd ( 𝜑 → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) )