Step |
Hyp |
Ref |
Expression |
1 |
|
copsex2b.xph |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
copsex2b.yph |
⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) |
3 |
|
copsex2b.xch |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
4 |
|
copsex2b.ych |
⊢ ( 𝜑 → Ⅎ 𝑦 𝜒 ) |
5 |
|
copsex2b.is |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
6 |
|
eqcom |
⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ↔ 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
|
vex |
⊢ 𝑦 ∈ V |
9 |
7 8
|
opth |
⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
10 |
6 9
|
bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
11 |
|
eqvisset |
⊢ ( 𝑥 = 𝐴 → 𝐴 ∈ V ) |
12 |
|
eqvisset |
⊢ ( 𝑦 = 𝐵 → 𝐵 ∈ V ) |
13 |
11 12
|
anim12i |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
14 |
10 13
|
sylbi |
⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
15 |
14
|
adantr |
⊢ ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
16 |
15
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
17 |
16
|
anim2i |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) → ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
18 |
|
simpl |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
19 |
18
|
anim2i |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) → ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
20 |
|
ax-5 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∀ 𝑥 ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
21 |
1 20
|
hban |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ∀ 𝑥 ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
22 |
|
ax-5 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∀ 𝑦 ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
23 |
2 22
|
hban |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ∀ 𝑦 ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → Ⅎ 𝑥 𝜒 ) |
25 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → Ⅎ 𝑦 𝜒 ) |
26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → 𝐴 ∈ V ) |
27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → 𝐵 ∈ V ) |
28 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
29 |
21 23 24 25 26 27 28
|
copsex2d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ↔ 𝜒 ) ) |
30 |
|
ibar |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝜒 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ( 𝜒 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) ) |
32 |
29 31
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) ) |
33 |
17 19 32
|
pm5.21nd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) ) |