| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 2 |  | cphipcj.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | cphip0l.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | cphphl | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  PreHil ) | 
						
							| 5 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 | 5 1 2 6 3 | ip0r | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ,   0  )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 8 | 4 7 | sylan | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ,   0  )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 9 |  | cphclm | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  ℂMod ) | 
						
							| 10 | 5 | clm0 | ⊢ ( 𝑊  ∈  ℂMod  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑊  ∈  ℂPreHil  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉 )  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 13 | 8 12 | eqtr4d | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ,   0  )  =  0 ) |