| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
ip0l.z |
⊢ 𝑍 = ( 0g ‘ 𝐹 ) |
| 5 |
|
ip0l.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 6 |
1 2 3 4 5
|
ip0l |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 0 , 𝐴 ) = 𝑍 ) |
| 7 |
6
|
fveq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) ) |
| 8 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 10 |
3 5
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝑉 ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 0 ∈ 𝑉 ) |
| 12 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
| 13 |
1 2 3 12
|
ipcj |
⊢ ( ( 𝑊 ∈ PreHil ∧ 0 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) ) |
| 14 |
13
|
3expa |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 0 ∈ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) ) |
| 15 |
14
|
an32s |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) ∧ 0 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) ) |
| 16 |
11 15
|
mpdan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) ) |
| 17 |
1
|
phlsrng |
⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ *-Ring ) |
| 19 |
12 4
|
srng0 |
⊢ ( 𝐹 ∈ *-Ring → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
| 21 |
7 16 20
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 0 ) = 𝑍 ) |