| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } |
| 2 |
|
abid2 |
⊢ { 𝑦 ∣ 𝑦 ∈ 𝐵 } = 𝐵 |
| 3 |
|
elex |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) |
| 4 |
2 3
|
eqeltrid |
⊢ ( 𝐵 ∈ 𝑊 → { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ) |
| 5 |
4
|
alimi |
⊢ ( ∀ 𝑥 𝐵 ∈ 𝑊 → ∀ 𝑥 { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ) |
| 6 |
|
spsbc |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V → [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ) ) |
| 7 |
5 6
|
syl5 |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 𝐵 ∈ 𝑊 → [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ) ) |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 V |
| 9 |
8
|
sbcabel |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ V ) ) |
| 10 |
7 9
|
sylibd |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 𝐵 ∈ 𝑊 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ V ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 𝐵 ∈ 𝑊 ) → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ V ) |
| 12 |
1 11
|
eqeltrid |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 𝐵 ∈ 𝑊 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 13 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) |
| 14 |
|
0ex |
⊢ ∅ ∈ V |
| 15 |
13 14
|
eqeltrdi |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 16 |
15
|
adantr |
⊢ ( ( ¬ 𝐴 ∈ V ∧ ∀ 𝑥 𝐵 ∈ 𝑊 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 17 |
12 16
|
pm2.61ian |
⊢ ( ∀ 𝑥 𝐵 ∈ 𝑊 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ V ) |