| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvlatcvr1.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 2 |  | cvlatcvr1.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 3 |  | cvlatcvr1.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | simp13 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  CvLat ) | 
						
							| 5 |  | cvlatl | ⊢ ( 𝐾  ∈  CvLat  →  𝐾  ∈  AtLat ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  AtLat ) | 
						
							| 7 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 8 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 9 | 7 8 3 | atnem0 | ⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  ↔  ( 𝑃 ( meet ‘ 𝐾 ) 𝑄 )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 10 | 6 9 | syld3an1 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  ↔  ( 𝑃 ( meet ‘ 𝐾 ) 𝑄 )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 12 | 11 3 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 13 | 11 1 7 8 2 3 | cvlcvrp | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑃 ( meet ‘ 𝐾 ) 𝑄 )  =  ( 0. ‘ 𝐾 )  ↔  𝑃 𝐶 ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 14 | 12 13 | syl3an2 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑃 ( meet ‘ 𝐾 ) 𝑄 )  =  ( 0. ‘ 𝐾 )  ↔  𝑃 𝐶 ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 15 | 10 14 | bitrd | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  ↔  𝑃 𝐶 ( 𝑃  ∨  𝑄 ) ) ) |