| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvlatcvr1.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 2 |  | cvlatcvr1.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 3 |  | cvlatcvr1.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 | 1 2 3 | cvlatcvr1 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  ↔  𝑃 𝐶 ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 5 |  | simp13 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  CvLat ) | 
						
							| 6 |  | cvllat | ⊢ ( 𝐾  ∈  CvLat  →  𝐾  ∈  Lat ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  Lat ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 9 | 8 3 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 10 | 9 | 3ad2ant2 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 11 | 8 3 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 12 | 11 | 3ad2ant3 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 13 | 8 1 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 14 | 7 10 12 13 | syl3anc | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 15 | 14 | breq2d | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃 𝐶 ( 𝑃  ∨  𝑄 )  ↔  𝑃 𝐶 ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 16 | 4 15 | bitrd | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  ↔  𝑃 𝐶 ( 𝑄  ∨  𝑃 ) ) ) |