Step |
Hyp |
Ref |
Expression |
1 |
|
decpmulnc.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
decpmulnc.b |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
decpmulnc.c |
⊢ 𝐶 ∈ ℕ0 |
4 |
|
decpmulnc.d |
⊢ 𝐷 ∈ ℕ0 |
5 |
|
decpmulnc.1 |
⊢ ( 𝐴 · 𝐶 ) = 𝐸 |
6 |
|
decpmulnc.2 |
⊢ ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) = 𝐹 |
7 |
|
decpmul.3 |
⊢ ( 𝐵 · 𝐷 ) = ; 𝐺 𝐻 |
8 |
|
decpmul.4 |
⊢ ( ; 𝐸 𝐺 + 𝐹 ) = 𝐼 |
9 |
|
decpmul.g |
⊢ 𝐺 ∈ ℕ0 |
10 |
|
decpmul.h |
⊢ 𝐻 ∈ ℕ0 |
11 |
1 2 3 4 5 6 7
|
decpmulnc |
⊢ ( ; 𝐴 𝐵 · ; 𝐶 𝐷 ) = ; ; 𝐸 𝐹 ; 𝐺 𝐻 |
12 |
|
dfdec10 |
⊢ ; ; 𝐸 𝐹 ; 𝐺 𝐻 = ( ( ; 1 0 · ; 𝐸 𝐹 ) + ; 𝐺 𝐻 ) |
13 |
1 3
|
nn0mulcli |
⊢ ( 𝐴 · 𝐶 ) ∈ ℕ0 |
14 |
5 13
|
eqeltrri |
⊢ 𝐸 ∈ ℕ0 |
15 |
2 3
|
nn0mulcli |
⊢ ( 𝐵 · 𝐶 ) ∈ ℕ0 |
16 |
1 4 15
|
numcl |
⊢ ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ∈ ℕ0 |
17 |
6 16
|
eqeltrri |
⊢ 𝐹 ∈ ℕ0 |
18 |
14 17
|
deccl |
⊢ ; 𝐸 𝐹 ∈ ℕ0 |
19 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
20 |
18
|
dec0u |
⊢ ( ; 1 0 · ; 𝐸 𝐹 ) = ; ; 𝐸 𝐹 0 |
21 |
|
eqid |
⊢ ; 𝐺 𝐻 = ; 𝐺 𝐻 |
22 |
14 17 9
|
decaddcom |
⊢ ( ; 𝐸 𝐹 + 𝐺 ) = ( ; 𝐸 𝐺 + 𝐹 ) |
23 |
22 8
|
eqtri |
⊢ ( ; 𝐸 𝐹 + 𝐺 ) = 𝐼 |
24 |
10
|
nn0cni |
⊢ 𝐻 ∈ ℂ |
25 |
24
|
addid2i |
⊢ ( 0 + 𝐻 ) = 𝐻 |
26 |
18 19 9 10 20 21 23 25
|
decadd |
⊢ ( ( ; 1 0 · ; 𝐸 𝐹 ) + ; 𝐺 𝐻 ) = ; 𝐼 𝐻 |
27 |
11 12 26
|
3eqtri |
⊢ ( ; 𝐴 𝐵 · ; 𝐶 𝐷 ) = ; 𝐼 𝐻 |