Step |
Hyp |
Ref |
Expression |
1 |
|
derangfmla.d |
β’ π· = ( π₯ β Fin β¦ ( β― β { π β£ ( π : π₯ β1-1-ontoβ π₯ β§ β π¦ β π₯ ( π β π¦ ) β π¦ ) } ) ) |
2 |
|
oveq2 |
β’ ( π = π β ( 1 ... π ) = ( 1 ... π ) ) |
3 |
2
|
fveq2d |
β’ ( π = π β ( π· β ( 1 ... π ) ) = ( π· β ( 1 ... π ) ) ) |
4 |
3
|
cbvmptv |
β’ ( π β β0 β¦ ( π· β ( 1 ... π ) ) ) = ( π β β0 β¦ ( π· β ( 1 ... π ) ) ) |
5 |
1 4
|
derangen2 |
β’ ( π΄ β Fin β ( π· β π΄ ) = ( ( π β β0 β¦ ( π· β ( 1 ... π ) ) ) β ( β― β π΄ ) ) ) |
6 |
5
|
adantr |
β’ ( ( π΄ β Fin β§ π΄ β β
) β ( π· β π΄ ) = ( ( π β β0 β¦ ( π· β ( 1 ... π ) ) ) β ( β― β π΄ ) ) ) |
7 |
|
hashnncl |
β’ ( π΄ β Fin β ( ( β― β π΄ ) β β β π΄ β β
) ) |
8 |
7
|
biimpar |
β’ ( ( π΄ β Fin β§ π΄ β β
) β ( β― β π΄ ) β β ) |
9 |
1 4
|
subfacval3 |
β’ ( ( β― β π΄ ) β β β ( ( π β β0 β¦ ( π· β ( 1 ... π ) ) ) β ( β― β π΄ ) ) = ( β β ( ( ( ! β ( β― β π΄ ) ) / e ) + ( 1 / 2 ) ) ) ) |
10 |
8 9
|
syl |
β’ ( ( π΄ β Fin β§ π΄ β β
) β ( ( π β β0 β¦ ( π· β ( 1 ... π ) ) ) β ( β― β π΄ ) ) = ( β β ( ( ( ! β ( β― β π΄ ) ) / e ) + ( 1 / 2 ) ) ) ) |
11 |
6 10
|
eqtrd |
β’ ( ( π΄ β Fin β§ π΄ β β
) β ( π· β π΄ ) = ( β β ( ( ( ! β ( β― β π΄ ) ) / e ) + ( 1 / 2 ) ) ) ) |