Step |
Hyp |
Ref |
Expression |
1 |
|
df-inito |
⊢ InitO = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |
2 |
|
eqid |
⊢ ( oppCat ‘ 𝑐 ) = ( oppCat ‘ 𝑐 ) |
3 |
2
|
oppccat |
⊢ ( 𝑐 ∈ Cat → ( oppCat ‘ 𝑐 ) ∈ Cat ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑐 ) = ( Base ‘ 𝑐 ) |
5 |
2 4
|
oppcbas |
⊢ ( Base ‘ 𝑐 ) = ( Base ‘ ( oppCat ‘ 𝑐 ) ) |
6 |
|
eqid |
⊢ ( Hom ‘ ( oppCat ‘ 𝑐 ) ) = ( Hom ‘ ( oppCat ‘ 𝑐 ) ) |
7 |
3 5 6
|
termoval |
⊢ ( 𝑐 ∈ Cat → ( TermO ‘ ( oppCat ‘ 𝑐 ) ) = { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) } ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝑐 ) |
9 |
8 2
|
oppchom |
⊢ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) = ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) |
10 |
9
|
eleq2i |
⊢ ( ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) ↔ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ) |
11 |
10
|
eubii |
⊢ ( ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) ↔ ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ) |
12 |
11
|
ralbii |
⊢ ( ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ) |
13 |
12
|
rabbii |
⊢ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) } = { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } |
14 |
7 13
|
eqtrdi |
⊢ ( 𝑐 ∈ Cat → ( TermO ‘ ( oppCat ‘ 𝑐 ) ) = { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |
15 |
14
|
mpteq2ia |
⊢ ( 𝑐 ∈ Cat ↦ ( TermO ‘ ( oppCat ‘ 𝑐 ) ) ) = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |
16 |
1 15
|
eqtr4i |
⊢ InitO = ( 𝑐 ∈ Cat ↦ ( TermO ‘ ( oppCat ‘ 𝑐 ) ) ) |