Metamath Proof Explorer


Theorem dipdi

Description: Distributive law for inner product. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipdir.1 𝑋 = ( BaseSet ‘ 𝑈 )
dipdir.2 𝐺 = ( +𝑣𝑈 )
dipdir.7 𝑃 = ( ·𝑖OLD𝑈 )
Assertion dipdi ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 dipdir.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 dipdir.2 𝐺 = ( +𝑣𝑈 )
3 dipdir.7 𝑃 = ( ·𝑖OLD𝑈 )
4 id ( ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) → ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) )
5 4 3com13 ( ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) → ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) )
6 id ( ( 𝐵𝑋𝐶𝑋𝐴𝑋 ) → ( 𝐵𝑋𝐶𝑋𝐴𝑋 ) )
7 6 3com12 ( ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) → ( 𝐵𝑋𝐶𝑋𝐴𝑋 ) )
8 1 2 3 dipdir ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵𝑋𝐶𝑋𝐴𝑋 ) ) → ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) = ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) )
9 7 8 sylan2 ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) = ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) )
10 9 fveq2d ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) ) = ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) )
11 phnv ( 𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec )
12 simpl ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → 𝑈 ∈ NrmCVec )
13 1 2 nvgcl ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋 ) → ( 𝐵 𝐺 𝐶 ) ∈ 𝑋 )
14 13 3com23 ( ( 𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐵𝑋 ) → ( 𝐵 𝐺 𝐶 ) ∈ 𝑋 )
15 14 3adant3r3 ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( 𝐵 𝐺 𝐶 ) ∈ 𝑋 )
16 simpr3 ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → 𝐴𝑋 )
17 1 3 dipcj ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 𝐺 𝐶 ) ∈ 𝑋𝐴𝑋 ) → ( ∗ ‘ ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) )
18 12 15 16 17 syl3anc ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) )
19 11 18 sylan ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) )
20 1 3 dipcl ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋 ) → ( 𝐵 𝑃 𝐴 ) ∈ ℂ )
21 20 3adant3r1 ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( 𝐵 𝑃 𝐴 ) ∈ ℂ )
22 1 3 dipcl ( ( 𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐴𝑋 ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ )
23 22 3adant3r2 ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ )
24 21 23 cjaddd ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) + ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) )
25 1 3 dipcj ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) )
26 25 3adant3r1 ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) )
27 1 3 dipcj ( ( 𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐴𝑋 ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) )
28 27 3adant3r2 ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) )
29 26 28 oveq12d ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) + ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) )
30 24 29 eqtrd ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) )
31 11 30 sylan ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) )
32 10 19 31 3eqtr3d ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) )
33 5 32 sylan2 ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) )