| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dipdir.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
dipdir.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
| 3 |
|
dipdir.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
| 4 |
|
id |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 5 |
4
|
3com13 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 6 |
|
id |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 7 |
6
|
3com12 |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 8 |
1 2 3
|
dipdir |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) = ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) |
| 9 |
7 8
|
sylan2 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) = ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) |
| 10 |
9
|
fveq2d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) ) = ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) ) |
| 11 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
| 12 |
|
simpl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑈 ∈ NrmCVec ) |
| 13 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐺 𝐶 ) ∈ 𝑋 ) |
| 14 |
13
|
3com23 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 𝐶 ) ∈ 𝑋 ) |
| 15 |
14
|
3adant3r3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐵 𝐺 𝐶 ) ∈ 𝑋 ) |
| 16 |
|
simpr3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
| 17 |
1 3
|
dipcj |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 𝐺 𝐶 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) ) |
| 18 |
12 15 16 17
|
syl3anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) ) |
| 19 |
11 18
|
sylan |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝐺 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) ) |
| 20 |
1 3
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐴 ) ∈ ℂ ) |
| 21 |
20
|
3adant3r1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐵 𝑃 𝐴 ) ∈ ℂ ) |
| 22 |
1 3
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) |
| 23 |
22
|
3adant3r2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) |
| 24 |
21 23
|
cjaddd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) + ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) ) |
| 25 |
1 3
|
dipcj |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 26 |
25
|
3adant3r1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 27 |
1 3
|
dipcj |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) ) |
| 28 |
27
|
3adant3r2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) ) |
| 29 |
26 28
|
oveq12d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) + ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) ) |
| 30 |
24 29
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) ) |
| 31 |
11 30
|
sylan |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) + ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) ) |
| 32 |
10 19 31
|
3eqtr3d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) ) |
| 33 |
5 32
|
sylan2 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐶 ) ) ) |