Metamath Proof Explorer


Theorem dipdi

Description: Distributive law for inner product. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipdir.1 X=BaseSetU
dipdir.2 G=+vU
dipdir.7 P=𝑖OLDU
Assertion dipdi UCPreHilOLDAXBXCXAPBGC=APB+APC

Proof

Step Hyp Ref Expression
1 dipdir.1 X=BaseSetU
2 dipdir.2 G=+vU
3 dipdir.7 P=𝑖OLDU
4 id CXBXAXCXBXAX
5 4 3com13 AXBXCXCXBXAX
6 id BXCXAXBXCXAX
7 6 3com12 CXBXAXBXCXAX
8 1 2 3 dipdir UCPreHilOLDBXCXAXBGCPA=BPA+CPA
9 7 8 sylan2 UCPreHilOLDCXBXAXBGCPA=BPA+CPA
10 9 fveq2d UCPreHilOLDCXBXAXBGCPA=BPA+CPA
11 phnv UCPreHilOLDUNrmCVec
12 simpl UNrmCVecCXBXAXUNrmCVec
13 1 2 nvgcl UNrmCVecBXCXBGCX
14 13 3com23 UNrmCVecCXBXBGCX
15 14 3adant3r3 UNrmCVecCXBXAXBGCX
16 simpr3 UNrmCVecCXBXAXAX
17 1 3 dipcj UNrmCVecBGCXAXBGCPA=APBGC
18 12 15 16 17 syl3anc UNrmCVecCXBXAXBGCPA=APBGC
19 11 18 sylan UCPreHilOLDCXBXAXBGCPA=APBGC
20 1 3 dipcl UNrmCVecBXAXBPA
21 20 3adant3r1 UNrmCVecCXBXAXBPA
22 1 3 dipcl UNrmCVecCXAXCPA
23 22 3adant3r2 UNrmCVecCXBXAXCPA
24 21 23 cjaddd UNrmCVecCXBXAXBPA+CPA=BPA+CPA
25 1 3 dipcj UNrmCVecBXAXBPA=APB
26 25 3adant3r1 UNrmCVecCXBXAXBPA=APB
27 1 3 dipcj UNrmCVecCXAXCPA=APC
28 27 3adant3r2 UNrmCVecCXBXAXCPA=APC
29 26 28 oveq12d UNrmCVecCXBXAXBPA+CPA=APB+APC
30 24 29 eqtrd UNrmCVecCXBXAXBPA+CPA=APB+APC
31 11 30 sylan UCPreHilOLDCXBXAXBPA+CPA=APB+APC
32 10 19 31 3eqtr3d UCPreHilOLDCXBXAXAPBGC=APB+APC
33 5 32 sylan2 UCPreHilOLDAXBXCXAPBGC=APB+APC