Metamath Proof Explorer


Theorem ip2dii

Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ip2dii.1 X=BaseSetU
ip2dii.2 G=+vU
ip2dii.7 P=𝑖OLDU
ip2dii.u UCPreHilOLD
ip2dii.a AX
ip2dii.b BX
ip2dii.c CX
ip2dii.d DX
Assertion ip2dii AGBPCGD=APC+BPD+APD+BPC

Proof

Step Hyp Ref Expression
1 ip2dii.1 X=BaseSetU
2 ip2dii.2 G=+vU
3 ip2dii.7 P=𝑖OLDU
4 ip2dii.u UCPreHilOLD
5 ip2dii.a AX
6 ip2dii.b BX
7 ip2dii.c CX
8 ip2dii.d DX
9 5 7 8 3pm3.2i AXCXDX
10 1 2 3 dipdi UCPreHilOLDAXCXDXAPCGD=APC+APD
11 4 9 10 mp2an APCGD=APC+APD
12 6 7 8 3pm3.2i BXCXDX
13 1 2 3 dipdi UCPreHilOLDBXCXDXBPCGD=BPC+BPD
14 4 12 13 mp2an BPCGD=BPC+BPD
15 11 14 oveq12i APCGD+BPCGD=APC+APD+BPC+BPD
16 4 phnvi UNrmCVec
17 1 2 nvgcl UNrmCVecCXDXCGDX
18 16 7 8 17 mp3an CGDX
19 5 6 18 3pm3.2i AXBXCGDX
20 1 2 3 dipdir UCPreHilOLDAXBXCGDXAGBPCGD=APCGD+BPCGD
21 4 19 20 mp2an AGBPCGD=APCGD+BPCGD
22 1 3 dipcl UNrmCVecAXCXAPC
23 16 5 7 22 mp3an APC
24 1 3 dipcl UNrmCVecBXDXBPD
25 16 6 8 24 mp3an BPD
26 1 3 dipcl UNrmCVecAXDXAPD
27 16 5 8 26 mp3an APD
28 1 3 dipcl UNrmCVecBXCXBPC
29 16 6 7 28 mp3an BPC
30 23 25 27 29 add42i APC+BPD+APD+BPC=APC+APD+BPC+BPD
31 15 21 30 3eqtr4i AGBPCGD=APC+BPD+APD+BPC