| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ditgcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 2 |
|
ditgcl.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 3 |
|
ditgcl.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 4 |
|
ditgcl.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 5 |
|
ditgcl.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐶 ∈ 𝑉 ) |
| 6 |
|
ditgcl.i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 7 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
| 8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
| 9 |
3 8
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) |
| 10 |
9
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 11 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
| 12 |
1 2 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
| 13 |
4 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) |
| 14 |
13
|
simp1d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 16 |
15
|
ditgpos |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |
| 17 |
1
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 18 |
9
|
simp2d |
⊢ ( 𝜑 → 𝑋 ≤ 𝐴 ) |
| 19 |
|
iooss1 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) |
| 20 |
17 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) |
| 21 |
2
|
rexrd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 22 |
13
|
simp3d |
⊢ ( 𝜑 → 𝐵 ≤ 𝑌 ) |
| 23 |
|
iooss2 |
⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐵 ≤ 𝑌 ) → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 24 |
21 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 25 |
20 24
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 26 |
25
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) |
| 27 |
26 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ 𝑉 ) |
| 28 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 30 |
25 29 5 6
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 31 |
27 30
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 33 |
16 32
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 ∈ ℂ ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) |
| 35 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 36 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 37 |
34 35 36
|
ditgneg |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 = - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ) |
| 38 |
13
|
simp2d |
⊢ ( 𝜑 → 𝑋 ≤ 𝐵 ) |
| 39 |
|
iooss1 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵 ) → ( 𝐵 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝐴 ) ) |
| 40 |
17 38 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝐴 ) ) |
| 41 |
9
|
simp3d |
⊢ ( 𝜑 → 𝐴 ≤ 𝑌 ) |
| 42 |
|
iooss2 |
⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐴 ≤ 𝑌 ) → ( 𝑋 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 43 |
21 41 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 44 |
40 43
|
sstrd |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐴 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 45 |
44
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) ) → 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) |
| 46 |
45 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) ) → 𝐶 ∈ 𝑉 ) |
| 47 |
|
ioombl |
⊢ ( 𝐵 (,) 𝐴 ) ∈ dom vol |
| 48 |
47
|
a1i |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐴 ) ∈ dom vol ) |
| 49 |
44 48 5 6
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 (,) 𝐴 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 50 |
46 49
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 51 |
50
|
negcld |
⊢ ( 𝜑 → - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ∈ ℂ ) |
| 53 |
37 52
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 ∈ ℂ ) |
| 54 |
10 14 33 53
|
lecasei |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 ∈ ℂ ) |