| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsflf1o.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
dvdsflf1o.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
|
dvdsflf1o.f |
⊢ 𝐹 = ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↦ ( 𝑁 · 𝑛 ) ) |
| 4 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑁 · 𝑛 ) → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ ( 𝑁 · 𝑛 ) ) ) |
| 5 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) → 𝑛 ∈ ℕ ) |
| 6 |
|
nnmulcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑁 · 𝑛 ) ∈ ℕ ) |
| 7 |
2 5 6
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ∈ ℕ ) |
| 8 |
1 2
|
nndivred |
⊢ ( 𝜑 → ( 𝐴 / 𝑁 ) ∈ ℝ ) |
| 9 |
|
fznnfl |
⊢ ( ( 𝐴 / 𝑁 ) ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑁 ) ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑁 ) ) ) ) |
| 11 |
10
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑛 ≤ ( 𝐴 / 𝑁 ) ) |
| 12 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 13 |
12
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑛 ∈ ℝ ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝐴 ∈ ℝ ) |
| 15 |
2
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑁 ∈ ℝ ) |
| 17 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 0 < 𝑁 ) |
| 19 |
|
lemuldiv2 |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑁 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑁 ) ) ) |
| 20 |
13 14 16 18 19
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( ( 𝑁 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑁 ) ) ) |
| 21 |
11 20
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ≤ 𝐴 ) |
| 22 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 23 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) → 𝑛 ∈ ℤ ) |
| 24 |
|
zmulcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑁 · 𝑛 ) ∈ ℤ ) |
| 25 |
22 23 24
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ∈ ℤ ) |
| 26 |
|
flge |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 · 𝑛 ) ∈ ℤ ) → ( ( 𝑁 · 𝑛 ) ≤ 𝐴 ↔ ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 27 |
14 25 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( ( 𝑁 · 𝑛 ) ≤ 𝐴 ↔ ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 28 |
21 27
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) |
| 29 |
1
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 31 |
|
fznn |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( ( 𝑁 · 𝑛 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( ( 𝑁 · 𝑛 ) ∈ ℕ ∧ ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( ( 𝑁 · 𝑛 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( ( 𝑁 · 𝑛 ) ∈ ℕ ∧ ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) ) |
| 33 |
7 28 32
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 34 |
|
dvdsmul1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑁 ∥ ( 𝑁 · 𝑛 ) ) |
| 35 |
22 23 34
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑁 ∥ ( 𝑁 · 𝑛 ) ) |
| 36 |
4 33 35
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) |
| 37 |
|
breq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ 𝑚 ) ) |
| 38 |
37
|
elrab |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ↔ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑁 ∥ 𝑚 ) ) |
| 39 |
38
|
simprbi |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } → 𝑁 ∥ 𝑚 ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑁 ∥ 𝑚 ) |
| 41 |
|
elrabi |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } → 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 43 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℕ ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ∈ ℕ ) |
| 45 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑁 ∈ ℕ ) |
| 46 |
|
nndivdvds |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∥ 𝑚 ↔ ( 𝑚 / 𝑁 ) ∈ ℕ ) ) |
| 47 |
44 45 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑁 ∥ 𝑚 ↔ ( 𝑚 / 𝑁 ) ∈ ℕ ) ) |
| 48 |
40 47
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑚 / 𝑁 ) ∈ ℕ ) |
| 49 |
|
fznnfl |
⊢ ( 𝐴 ∈ ℝ → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴 ) ) ) |
| 50 |
1 49
|
syl |
⊢ ( 𝜑 → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴 ) ) ) |
| 51 |
50
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ≤ 𝐴 ) |
| 52 |
41 51
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ≤ 𝐴 ) |
| 53 |
44
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ∈ ℝ ) |
| 54 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝐴 ∈ ℝ ) |
| 55 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑁 ∈ ℝ ) |
| 56 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 0 < 𝑁 ) |
| 57 |
|
lediv1 |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( 𝑚 ≤ 𝐴 ↔ ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) ) |
| 58 |
53 54 55 56 57
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑚 ≤ 𝐴 ↔ ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) ) |
| 59 |
52 58
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) |
| 60 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝐴 / 𝑁 ) ∈ ℝ ) |
| 61 |
|
fznnfl |
⊢ ( ( 𝐴 / 𝑁 ) ∈ ℝ → ( ( 𝑚 / 𝑁 ) ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↔ ( ( 𝑚 / 𝑁 ) ∈ ℕ ∧ ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) ) ) |
| 62 |
60 61
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( ( 𝑚 / 𝑁 ) ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↔ ( ( 𝑚 / 𝑁 ) ∈ ℕ ∧ ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) ) ) |
| 63 |
48 59 62
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑚 / 𝑁 ) ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) |
| 64 |
44
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ∈ ℂ ) |
| 65 |
64
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → 𝑚 ∈ ℂ ) |
| 66 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → 𝑁 ∈ ℂ ) |
| 68 |
12
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑛 ∈ ℂ ) |
| 69 |
68
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → 𝑛 ∈ ℂ ) |
| 70 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → 𝑁 ≠ 0 ) |
| 72 |
65 67 69 71
|
divmuld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → ( ( 𝑚 / 𝑁 ) = 𝑛 ↔ ( 𝑁 · 𝑛 ) = 𝑚 ) ) |
| 73 |
|
eqcom |
⊢ ( 𝑛 = ( 𝑚 / 𝑁 ) ↔ ( 𝑚 / 𝑁 ) = 𝑛 ) |
| 74 |
|
eqcom |
⊢ ( 𝑚 = ( 𝑁 · 𝑛 ) ↔ ( 𝑁 · 𝑛 ) = 𝑚 ) |
| 75 |
72 73 74
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → ( 𝑛 = ( 𝑚 / 𝑁 ) ↔ 𝑚 = ( 𝑁 · 𝑛 ) ) ) |
| 76 |
3 36 63 75
|
f1o2d |
⊢ ( 𝜑 → 𝐹 : ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) –1-1-onto→ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) |