Metamath Proof Explorer


Theorem dvne0f1

Description: A function on a closed interval with nonzero derivative is one-to-one. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses dvne0.a ( 𝜑𝐴 ∈ ℝ )
dvne0.b ( 𝜑𝐵 ∈ ℝ )
dvne0.f ( 𝜑𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
dvne0.d ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) )
dvne0.z ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) )
Assertion dvne0f1 ( 𝜑𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ℝ )

Proof

Step Hyp Ref Expression
1 dvne0.a ( 𝜑𝐴 ∈ ℝ )
2 dvne0.b ( 𝜑𝐵 ∈ ℝ )
3 dvne0.f ( 𝜑𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
4 dvne0.d ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) )
5 dvne0.z ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) )
6 1 2 3 4 5 dvne0 ( 𝜑 → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) )
7 isof1o ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 )
8 isof1o ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 )
9 7 8 jaoi ( ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 )
10 f1of1 ( 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ran 𝐹 )
11 6 9 10 3syl ( 𝜑𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ran 𝐹 )
12 cncff ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
13 frn ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → ran 𝐹 ⊆ ℝ )
14 3 12 13 3syl ( 𝜑 → ran 𝐹 ⊆ ℝ )
15 f1ss ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ran 𝐹 ∧ ran 𝐹 ⊆ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ℝ )
16 11 14 15 syl2anc ( 𝜑𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ℝ )