Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝐴 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝐵 + 1 ) ) ) ↔ ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ( ℤ≥ ‘ ( 𝐵 + 1 ) ) ) ) |
2 |
|
zltp1le |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 < 𝐴 ↔ ( 𝐵 + 1 ) ≤ 𝐴 ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( 𝐵 + 1 ) ≤ 𝐴 ) ) |
4 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
5 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
6 |
|
lenlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
7 |
4 5 6
|
syl2anr |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
8 |
|
peano2z |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 + 1 ) ∈ ℤ ) |
9 |
|
eluz |
⊢ ( ( ( 𝐵 + 1 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∈ ( ℤ≥ ‘ ( 𝐵 + 1 ) ) ↔ ( 𝐵 + 1 ) ≤ 𝐴 ) ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∈ ( ℤ≥ ‘ ( 𝐵 + 1 ) ) ↔ ( 𝐵 + 1 ) ≤ 𝐴 ) ) |
11 |
10
|
notbid |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ¬ 𝐴 ∈ ( ℤ≥ ‘ ( 𝐵 + 1 ) ) ↔ ¬ ( 𝐵 + 1 ) ≤ 𝐴 ) ) |
12 |
3 7 11
|
3bitr4rd |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ¬ 𝐴 ∈ ( ℤ≥ ‘ ( 𝐵 + 1 ) ) ↔ 𝐴 ≤ 𝐵 ) ) |
13 |
12
|
pm5.32da |
⊢ ( 𝐵 ∈ ℤ → ( ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ( ℤ≥ ‘ ( 𝐵 + 1 ) ) ) ↔ ( 𝐴 ∈ ℤ ∧ 𝐴 ≤ 𝐵 ) ) ) |
14 |
1 13
|
syl5bb |
⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝐵 + 1 ) ) ) ↔ ( 𝐴 ∈ ℤ ∧ 𝐴 ≤ 𝐵 ) ) ) |