Step |
Hyp |
Ref |
Expression |
1 |
|
elun |
⊢ ( 𝑎 ∈ ( ( ℤ ∖ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ↔ ( 𝑎 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ∨ 𝑎 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
2 |
|
ellz1 |
⊢ ( 𝐴 ∈ ℤ → ( 𝑎 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ↔ ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝐴 ) ) ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) → ( 𝑎 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ↔ ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝐴 ) ) ) |
4 |
|
eluz1 |
⊢ ( 𝐵 ∈ ℤ → ( 𝑎 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝑎 ∈ ℤ ∧ 𝐵 ≤ 𝑎 ) ) ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) → ( 𝑎 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝑎 ∈ ℤ ∧ 𝐵 ≤ 𝑎 ) ) ) |
6 |
3 5
|
orbi12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) → ( ( 𝑎 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ∨ 𝑎 ∈ ( ℤ≥ ‘ 𝐵 ) ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝐴 ) ∨ ( 𝑎 ∈ ℤ ∧ 𝐵 ≤ 𝑎 ) ) ) ) |
7 |
|
zre |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℝ ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) → 𝑎 ∈ ℝ ) |
9 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
10 |
9
|
zred |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
11 |
|
lelttric |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎 ) ) |
12 |
8 10 11
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎 ) ) |
13 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 < 𝑎 ) → 𝐵 ∈ ℤ ) |
14 |
13
|
zred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 < 𝑎 ) → 𝐵 ∈ ℝ ) |
15 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 < 𝑎 ) → 𝐴 ∈ ℤ ) |
16 |
15
|
peano2zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 < 𝑎 ) → ( 𝐴 + 1 ) ∈ ℤ ) |
17 |
16
|
zred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 < 𝑎 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
18 |
7
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 < 𝑎 ) → 𝑎 ∈ ℝ ) |
19 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 < 𝑎 ) → 𝐵 ≤ ( 𝐴 + 1 ) ) |
20 |
|
zltp1le |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ( 𝐴 < 𝑎 ↔ ( 𝐴 + 1 ) ≤ 𝑎 ) ) |
21 |
20
|
3ad2antl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 < 𝑎 ↔ ( 𝐴 + 1 ) ≤ 𝑎 ) ) |
22 |
21
|
biimpa |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 < 𝑎 ) → ( 𝐴 + 1 ) ≤ 𝑎 ) |
23 |
14 17 18 19 22
|
letrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝐴 < 𝑎 ) → 𝐵 ≤ 𝑎 ) |
24 |
23
|
ex |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 < 𝑎 → 𝐵 ≤ 𝑎 ) ) |
25 |
24
|
orim2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎 ) → ( 𝑎 ≤ 𝐴 ∨ 𝐵 ≤ 𝑎 ) ) ) |
26 |
12 25
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 ≤ 𝐴 ∨ 𝐵 ≤ 𝑎 ) ) |
27 |
26
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) → ( 𝑎 ∈ ℤ → ( 𝑎 ≤ 𝐴 ∨ 𝐵 ≤ 𝑎 ) ) ) |
28 |
27
|
pm4.71d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) → ( 𝑎 ∈ ℤ ↔ ( 𝑎 ∈ ℤ ∧ ( 𝑎 ≤ 𝐴 ∨ 𝐵 ≤ 𝑎 ) ) ) ) |
29 |
|
andi |
⊢ ( ( 𝑎 ∈ ℤ ∧ ( 𝑎 ≤ 𝐴 ∨ 𝐵 ≤ 𝑎 ) ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝐴 ) ∨ ( 𝑎 ∈ ℤ ∧ 𝐵 ≤ 𝑎 ) ) ) |
30 |
28 29
|
bitr2di |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) → ( ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝐴 ) ∨ ( 𝑎 ∈ ℤ ∧ 𝐵 ≤ 𝑎 ) ) ↔ 𝑎 ∈ ℤ ) ) |
31 |
6 30
|
bitrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) → ( ( 𝑎 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ∨ 𝑎 ∈ ( ℤ≥ ‘ 𝐵 ) ) ↔ 𝑎 ∈ ℤ ) ) |
32 |
1 31
|
syl5bb |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) → ( 𝑎 ∈ ( ( ℤ ∖ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ↔ 𝑎 ∈ ℤ ) ) |
33 |
32
|
eqrdv |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ ( 𝐴 + 1 ) ) → ( ( ℤ ∖ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ∪ ( ℤ≥ ‘ 𝐵 ) ) = ℤ ) |