Metamath Proof Explorer


Theorem fz1eqin

Description: Express a one-based finite range as the intersection of lower integers with NN . (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion fz1eqin ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) = ( ( ℤ ∖ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∩ ℕ ) )

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
3 elfz1 ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑎 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁 ) ) )
4 1 2 3 sylancr ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁 ) ) )
5 3anass ( ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁 ) ↔ ( 𝑎 ∈ ℤ ∧ ( 1 ≤ 𝑎𝑎𝑁 ) ) )
6 ancom ( ( 1 ≤ 𝑎𝑎𝑁 ) ↔ ( 𝑎𝑁 ∧ 1 ≤ 𝑎 ) )
7 6 anbi2i ( ( 𝑎 ∈ ℤ ∧ ( 1 ≤ 𝑎𝑎𝑁 ) ) ↔ ( 𝑎 ∈ ℤ ∧ ( 𝑎𝑁 ∧ 1 ≤ 𝑎 ) ) )
8 anandi ( ( 𝑎 ∈ ℤ ∧ ( 𝑎𝑁 ∧ 1 ≤ 𝑎 ) ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) )
9 5 7 8 3bitri ( ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁 ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) )
10 4 9 bitrdi ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) ) )
11 elin ( 𝑎 ∈ ( ( ℤ ∖ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∩ ℕ ) ↔ ( 𝑎 ∈ ( ℤ ∖ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑎 ∈ ℕ ) )
12 ellz1 ( 𝑁 ∈ ℤ → ( 𝑎 ∈ ( ℤ ∖ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ↔ ( 𝑎 ∈ ℤ ∧ 𝑎𝑁 ) ) )
13 2 12 syl ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( ℤ ∖ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ↔ ( 𝑎 ∈ ℤ ∧ 𝑎𝑁 ) ) )
14 elnnz1 ( 𝑎 ∈ ℕ ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) )
15 14 a1i ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ℕ ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) )
16 13 15 anbi12d ( 𝑁 ∈ ℕ0 → ( ( 𝑎 ∈ ( ℤ ∖ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑎 ∈ ℕ ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) ) )
17 11 16 syl5bb ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( ( ℤ ∖ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∩ ℕ ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) ) )
18 10 17 bitr4d ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( 1 ... 𝑁 ) ↔ 𝑎 ∈ ( ( ℤ ∖ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∩ ℕ ) ) )
19 18 eqrdv ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) = ( ( ℤ ∖ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∩ ℕ ) )