Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
⊢ 1 ∈ ℤ |
2 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
3 |
|
elfz1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑎 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁 ) ) ) |
4 |
1 2 3
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁 ) ) ) |
5 |
|
3anass |
⊢ ( ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁 ) ↔ ( 𝑎 ∈ ℤ ∧ ( 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁 ) ) ) |
6 |
|
ancom |
⊢ ( ( 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁 ) ↔ ( 𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎 ) ) |
7 |
6
|
anbi2i |
⊢ ( ( 𝑎 ∈ ℤ ∧ ( 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁 ) ) ↔ ( 𝑎 ∈ ℤ ∧ ( 𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎 ) ) ) |
8 |
|
anandi |
⊢ ( ( 𝑎 ∈ ℤ ∧ ( 𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎 ) ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) ) |
9 |
5 7 8
|
3bitri |
⊢ ( ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁 ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) ) |
10 |
4 9
|
bitrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) ) ) |
11 |
|
elin |
⊢ ( 𝑎 ∈ ( ( ℤ ∖ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∩ ℕ ) ↔ ( 𝑎 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑎 ∈ ℕ ) ) |
12 |
|
ellz1 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑎 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ↔ ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁 ) ) ) |
13 |
2 12
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ↔ ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁 ) ) ) |
14 |
|
elnnz1 |
⊢ ( 𝑎 ∈ ℕ ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
15 |
14
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ℕ ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) ) |
16 |
13 15
|
anbi12d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑎 ∈ ( ℤ ∖ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑎 ∈ ℕ ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) ) ) |
17 |
11 16
|
syl5bb |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( ( ℤ ∖ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∩ ℕ ) ↔ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) ) ) |
18 |
10 17
|
bitr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑎 ∈ ( 1 ... 𝑁 ) ↔ 𝑎 ∈ ( ( ℤ ∖ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∩ ℕ ) ) ) |
19 |
18
|
eqrdv |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) = ( ( ℤ ∖ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∩ ℕ ) ) |