Metamath Proof Explorer


Theorem lzunuz

Description: The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion lzunuz ABBA+1A+1B=

Proof

Step Hyp Ref Expression
1 elun aA+1BaA+1aB
2 ellz1 AaA+1aaA
3 2 3ad2ant1 ABBA+1aA+1aaA
4 eluz1 BaBaBa
5 4 3ad2ant2 ABBA+1aBaBa
6 3 5 orbi12d ABBA+1aA+1aBaaAaBa
7 zre aa
8 7 adantl ABBA+1aa
9 simpl1 ABBA+1aA
10 9 zred ABBA+1aA
11 lelttric aAaAA<a
12 8 10 11 syl2anc ABBA+1aaAA<a
13 simpll2 ABBA+1aA<aB
14 13 zred ABBA+1aA<aB
15 simpll1 ABBA+1aA<aA
16 15 peano2zd ABBA+1aA<aA+1
17 16 zred ABBA+1aA<aA+1
18 7 ad2antlr ABBA+1aA<aa
19 simpll3 ABBA+1aA<aBA+1
20 zltp1le AaA<aA+1a
21 20 3ad2antl1 ABBA+1aA<aA+1a
22 21 biimpa ABBA+1aA<aA+1a
23 14 17 18 19 22 letrd ABBA+1aA<aBa
24 23 ex ABBA+1aA<aBa
25 24 orim2d ABBA+1aaAA<aaABa
26 12 25 mpd ABBA+1aaABa
27 26 ex ABBA+1aaABa
28 27 pm4.71d ABBA+1aaaABa
29 andi aaABaaaAaBa
30 28 29 bitr2di ABBA+1aaAaBaa
31 6 30 bitrd ABBA+1aA+1aBa
32 1 31 bitrid ABBA+1aA+1Ba
33 32 eqrdv ABBA+1A+1B=