Metamath Proof Explorer


Theorem ellz1

Description: Membership in a lower set of integers. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion ellz1 B A B + 1 A A B

Proof

Step Hyp Ref Expression
1 eldif A B + 1 A ¬ A B + 1
2 zltp1le B A B < A B + 1 A
3 2 notbid B A ¬ B < A ¬ B + 1 A
4 zre A A
5 zre B B
6 lenlt A B A B ¬ B < A
7 4 5 6 syl2anr B A A B ¬ B < A
8 peano2z B B + 1
9 eluz B + 1 A A B + 1 B + 1 A
10 8 9 sylan B A A B + 1 B + 1 A
11 10 notbid B A ¬ A B + 1 ¬ B + 1 A
12 3 7 11 3bitr4rd B A ¬ A B + 1 A B
13 12 pm5.32da B A ¬ A B + 1 A A B
14 1 13 syl5bb B A B + 1 A A B