Metamath Proof Explorer


Theorem elnpi

Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion elnpi ( 𝐴P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴P𝐴 ∈ V )
2 simpl1 ( ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) → 𝐴 ∈ V )
3 psseq2 ( 𝑧 = 𝑤 → ( ∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝑤 ) )
4 psseq1 ( 𝑧 = 𝑤 → ( 𝑧Q𝑤Q ) )
5 3 4 anbi12d ( 𝑧 = 𝑤 → ( ( ∅ ⊊ 𝑧𝑧Q ) ↔ ( ∅ ⊊ 𝑤𝑤Q ) ) )
6 elequ2 ( 𝑧 = 𝑤 → ( 𝑦𝑧𝑦𝑤 ) )
7 6 imbi2d ( 𝑧 = 𝑤 → ( ( 𝑦 <Q 𝑥𝑦𝑧 ) ↔ ( 𝑦 <Q 𝑥𝑦𝑤 ) ) )
8 7 albidv ( 𝑧 = 𝑤 → ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ↔ ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑤 ) ) )
9 rexeq ( 𝑧 = 𝑤 → ( ∃ 𝑦𝑧 𝑥 <Q 𝑦 ↔ ∃ 𝑦𝑤 𝑥 <Q 𝑦 ) )
10 8 9 anbi12d ( 𝑧 = 𝑤 → ( ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑤 ) ∧ ∃ 𝑦𝑤 𝑥 <Q 𝑦 ) ) )
11 10 raleqbi1dv ( 𝑧 = 𝑤 → ( ∀ 𝑥𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ↔ ∀ 𝑥𝑤 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑤 ) ∧ ∃ 𝑦𝑤 𝑥 <Q 𝑦 ) ) )
12 5 11 anbi12d ( 𝑧 = 𝑤 → ( ( ( ∅ ⊊ 𝑧𝑧Q ) ∧ ∀ 𝑥𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ) ↔ ( ( ∅ ⊊ 𝑤𝑤Q ) ∧ ∀ 𝑥𝑤 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑤 ) ∧ ∃ 𝑦𝑤 𝑥 <Q 𝑦 ) ) ) )
13 psseq2 ( 𝑤 = 𝐴 → ( ∅ ⊊ 𝑤 ↔ ∅ ⊊ 𝐴 ) )
14 psseq1 ( 𝑤 = 𝐴 → ( 𝑤Q𝐴Q ) )
15 13 14 anbi12d ( 𝑤 = 𝐴 → ( ( ∅ ⊊ 𝑤𝑤Q ) ↔ ( ∅ ⊊ 𝐴𝐴Q ) ) )
16 eleq2 ( 𝑤 = 𝐴 → ( 𝑦𝑤𝑦𝐴 ) )
17 16 imbi2d ( 𝑤 = 𝐴 → ( ( 𝑦 <Q 𝑥𝑦𝑤 ) ↔ ( 𝑦 <Q 𝑥𝑦𝐴 ) ) )
18 17 albidv ( 𝑤 = 𝐴 → ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑤 ) ↔ ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ) )
19 rexeq ( 𝑤 = 𝐴 → ( ∃ 𝑦𝑤 𝑥 <Q 𝑦 ↔ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) )
20 18 19 anbi12d ( 𝑤 = 𝐴 → ( ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑤 ) ∧ ∃ 𝑦𝑤 𝑥 <Q 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )
21 20 raleqbi1dv ( 𝑤 = 𝐴 → ( ∀ 𝑥𝑤 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑤 ) ∧ ∃ 𝑦𝑤 𝑥 <Q 𝑦 ) ↔ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )
22 15 21 anbi12d ( 𝑤 = 𝐴 → ( ( ( ∅ ⊊ 𝑤𝑤Q ) ∧ ∀ 𝑥𝑤 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑤 ) ∧ ∃ 𝑦𝑤 𝑥 <Q 𝑦 ) ) ↔ ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
23 df-np P = { 𝑧 ∣ ( ( ∅ ⊊ 𝑧𝑧Q ) ∧ ∀ 𝑥𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ) }
24 12 22 23 elab2gw ( 𝐴 ∈ V → ( 𝐴P ↔ ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
25 id ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) → ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) )
26 25 3expib ( 𝐴 ∈ V → ( ( ∅ ⊊ 𝐴𝐴Q ) → ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ) )
27 3simpc ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) → ( ∅ ⊊ 𝐴𝐴Q ) )
28 26 27 impbid1 ( 𝐴 ∈ V → ( ( ∅ ⊊ 𝐴𝐴Q ) ↔ ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ) )
29 28 anbi1d ( 𝐴 ∈ V → ( ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
30 24 29 bitrd ( 𝐴 ∈ V → ( 𝐴P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
31 1 2 30 pm5.21nii ( 𝐴P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )