Metamath Proof Explorer


Theorem epfrc

Description: A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004) (Revised by David Abernethy, 22-Feb-2011)

Ref Expression
Hypothesis epfrc.1 𝐵 ∈ V
Assertion epfrc ( ( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ )

Proof

Step Hyp Ref Expression
1 epfrc.1 𝐵 ∈ V
2 1 frc ( ( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 { 𝑦𝐵𝑦 E 𝑥 } = ∅ )
3 dfin5 ( 𝐵𝑥 ) = { 𝑦𝐵𝑦𝑥 }
4 epel ( 𝑦 E 𝑥𝑦𝑥 )
5 4 rabbii { 𝑦𝐵𝑦 E 𝑥 } = { 𝑦𝐵𝑦𝑥 }
6 3 5 eqtr4i ( 𝐵𝑥 ) = { 𝑦𝐵𝑦 E 𝑥 }
7 6 eqeq1i ( ( 𝐵𝑥 ) = ∅ ↔ { 𝑦𝐵𝑦 E 𝑥 } = ∅ )
8 7 rexbii ( ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ ↔ ∃ 𝑥𝐵 { 𝑦𝐵𝑦 E 𝑥 } = ∅ )
9 2 8 sylibr ( ( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ )