Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze2.r |
β’ ( π β π
β β ) |
2 |
|
erdsze2.s |
β’ ( π β π β β ) |
3 |
|
erdsze2.f |
β’ ( π β πΉ : π΄ β1-1β β ) |
4 |
|
erdsze2.a |
β’ ( π β π΄ β β ) |
5 |
|
erdsze2.l |
β’ ( π β ( ( π
β 1 ) Β· ( π β 1 ) ) < ( β― β π΄ ) ) |
6 |
|
eqid |
β’ ( ( π
β 1 ) Β· ( π β 1 ) ) = ( ( π
β 1 ) Β· ( π β 1 ) ) |
7 |
1 2 3 4 6 5
|
erdsze2lem1 |
β’ ( π β β π ( π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) ) |
8 |
1
|
adantr |
β’ ( ( π β§ ( π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) ) β π
β β ) |
9 |
2
|
adantr |
β’ ( ( π β§ ( π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) ) β π β β ) |
10 |
3
|
adantr |
β’ ( ( π β§ ( π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) ) β πΉ : π΄ β1-1β β ) |
11 |
4
|
adantr |
β’ ( ( π β§ ( π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) ) β π΄ β β ) |
12 |
5
|
adantr |
β’ ( ( π β§ ( π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) ) β ( ( π
β 1 ) Β· ( π β 1 ) ) < ( β― β π΄ ) ) |
13 |
|
simprl |
β’ ( ( π β§ ( π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) ) β π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ ) |
14 |
|
simprr |
β’ ( ( π β§ ( π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) ) β π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) |
15 |
8 9 10 11 6 12 13 14
|
erdsze2lem2 |
β’ ( ( π β§ ( π : ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( ( ( π
β 1 ) Β· ( π β 1 ) ) + 1 ) ) , ran π ) ) ) β β π β π« π΄ ( ( π
β€ ( β― β π ) β§ ( πΉ βΎ π ) Isom < , < ( π , ( πΉ β π ) ) ) β¨ ( π β€ ( β― β π ) β§ ( πΉ βΎ π ) Isom < , β‘ < ( π , ( πΉ β π ) ) ) ) ) |
16 |
7 15
|
exlimddv |
β’ ( π β β π β π« π΄ ( ( π
β€ ( β― β π ) β§ ( πΉ βΎ π ) Isom < , < ( π , ( πΉ β π ) ) ) β¨ ( π β€ ( β― β π ) β§ ( πΉ βΎ π ) Isom < , β‘ < ( π , ( πΉ β π ) ) ) ) ) |