| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlsegvdeg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
trlsegvdeg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
trlsegvdeg.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 4 |
|
trlsegvdeg.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 5 |
|
trlsegvdeg.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 6 |
|
trlsegvdeg.w |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 7 |
|
trlsegvdeg.vx |
⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) |
| 8 |
|
trlsegvdeg.vy |
⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
| 9 |
|
trlsegvdeg.vz |
⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) |
| 10 |
|
trlsegvdeg.ix |
⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 11 |
|
trlsegvdeg.iy |
⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 12 |
|
trlsegvdeg.iz |
⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) |
| 13 |
|
eupth2lem3.o |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) |
| 14 |
|
eupth2lem3lem3.e |
⊢ ( 𝜑 → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 15 |
|
eupth2lem3lem4.i |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ 𝒫 𝑉 ) |
| 16 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( 𝐹 ‘ 𝑁 ) ∈ V ) |
| 17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → 𝑈 ∈ 𝑉 ) |
| 18 |
1 2 3 4 5 6
|
trlsegvdeglem1 |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) |
| 19 |
18
|
simprd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) |
| 21 |
|
neeq1 |
⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ↔ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
| 22 |
21
|
biimpcd |
⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
| 25 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ 𝒫 𝑉 ) |
| 26 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 27 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 28 |
|
df-ne |
⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ↔ ¬ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
| 29 |
|
ifpfal |
⊢ ( ¬ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 30 |
28 29
|
sylbi |
⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 32 |
|
preq1 |
⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } = { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
| 33 |
32
|
sseq1d |
⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → ( { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ↔ { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 34 |
33
|
biimpcd |
⊢ ( { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 35 |
31 34
|
biimtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
| 36 |
27 35
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 37 |
36
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 38 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
| 39 |
16 17 20 24 25 26 37 38
|
1hegrvtxdg1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) = 1 ) |
| 40 |
39
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) |
| 41 |
40
|
breq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 42 |
41
|
notbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 43 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem1 |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℕ0 ) |
| 44 |
43
|
nn0zd |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ) |
| 45 |
|
2nn |
⊢ 2 ∈ ℕ |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 47 |
|
1lt2 |
⊢ 1 < 2 |
| 48 |
47
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 49 |
|
ndvdsp1 |
⊢ ( ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2 ) → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) → ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 50 |
44 46 48 49
|
syl3anc |
⊢ ( 𝜑 → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) → ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 51 |
50
|
con2d |
⊢ ( 𝜑 → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) → ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 52 |
|
1z |
⊢ 1 ∈ ℤ |
| 53 |
|
n2dvds1 |
⊢ ¬ 2 ∥ 1 |
| 54 |
|
opoe |
⊢ ( ( ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ∧ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ∧ ( 1 ∈ ℤ ∧ ¬ 2 ∥ 1 ) ) → 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) |
| 55 |
52 53 54
|
mpanr12 |
⊢ ( ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ∧ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) → 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) |
| 56 |
55
|
ex |
⊢ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) → 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 57 |
44 56
|
syl |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) → 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 58 |
51 57
|
impbid |
⊢ ( 𝜑 → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 59 |
|
fveq2 |
⊢ ( 𝑥 = 𝑈 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) |
| 60 |
59
|
breq2d |
⊢ ( 𝑥 = 𝑈 → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 61 |
60
|
notbid |
⊢ ( 𝑥 = 𝑈 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 62 |
61
|
elrab3 |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 63 |
5 62
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 64 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 65 |
58 63 64
|
3bitr2d |
⊢ ( 𝜑 → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 66 |
65
|
notbid |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 68 |
|
fvex |
⊢ ( 𝑃 ‘ 𝑁 ) ∈ V |
| 69 |
68
|
eupth2lem2 |
⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 70 |
69
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 71 |
42 67 70
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 72 |
71
|
expcom |
⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 73 |
72
|
eqcoms |
⊢ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 74 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 𝐹 ‘ 𝑁 ) ∈ V ) |
| 75 |
18
|
simpld |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) |
| 76 |
75
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) |
| 77 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → 𝑈 ∈ 𝑉 ) |
| 78 |
|
neeq2 |
⊢ ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃 ‘ 𝑁 ) ≠ 𝑈 ) ) |
| 79 |
78
|
biimpcd |
⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( 𝑃 ‘ 𝑁 ) ≠ 𝑈 ) ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( 𝑃 ‘ 𝑁 ) ≠ 𝑈 ) ) |
| 81 |
80
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 𝑃 ‘ 𝑁 ) ≠ 𝑈 ) |
| 82 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ 𝒫 𝑉 ) |
| 83 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 84 |
|
preq2 |
⊢ ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } = { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ) |
| 85 |
84
|
sseq1d |
⊢ ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 86 |
85
|
biimpcd |
⊢ ( { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 87 |
31 86
|
biimtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
| 88 |
27 87
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 89 |
88
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 90 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
| 91 |
74 76 77 81 82 83 89 90
|
1hegrvtxdg1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) = 1 ) |
| 92 |
91
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) |
| 93 |
92
|
breq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 94 |
93
|
notbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 95 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 96 |
|
necom |
⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ≠ ( 𝑃 ‘ 𝑁 ) ) |
| 97 |
|
fvex |
⊢ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ V |
| 98 |
97
|
eupth2lem2 |
⊢ ( ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) ≠ ( 𝑃 ‘ 𝑁 ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 99 |
96 98
|
sylanb |
⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 100 |
99
|
con1bid |
⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 101 |
100
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 102 |
94 95 101
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 103 |
102
|
expcom |
⊢ ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 104 |
103
|
eqcoms |
⊢ ( 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 105 |
73 104
|
jaoi |
⊢ ( ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 106 |
105
|
com12 |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 107 |
106
|
3impia |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |