Metamath Proof Explorer


Theorem eupth2lem3lem4

Description: Lemma for eupth2lem3 , formerly part of proof of eupth2lem3 : If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 25-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V = Vtx G
trlsegvdeg.i I = iEdg G
trlsegvdeg.f φ Fun I
trlsegvdeg.n φ N 0 ..^ F
trlsegvdeg.u φ U V
trlsegvdeg.w φ F Trails G P
trlsegvdeg.vx φ Vtx X = V
trlsegvdeg.vy φ Vtx Y = V
trlsegvdeg.vz φ Vtx Z = V
trlsegvdeg.ix φ iEdg X = I F 0 ..^ N
trlsegvdeg.iy φ iEdg Y = F N I F N
trlsegvdeg.iz φ iEdg Z = I F 0 N
eupth2lem3.o φ x V | ¬ 2 VtxDeg X x = if P 0 = P N P 0 P N
eupth2lem3lem3.e φ if- P N = P N + 1 I F N = P N P N P N + 1 I F N
eupth2lem3lem4.i φ I F N 𝒫 V
Assertion eupth2lem3lem4 φ P N P N + 1 U = P N U = P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V = Vtx G
2 trlsegvdeg.i I = iEdg G
3 trlsegvdeg.f φ Fun I
4 trlsegvdeg.n φ N 0 ..^ F
5 trlsegvdeg.u φ U V
6 trlsegvdeg.w φ F Trails G P
7 trlsegvdeg.vx φ Vtx X = V
8 trlsegvdeg.vy φ Vtx Y = V
9 trlsegvdeg.vz φ Vtx Z = V
10 trlsegvdeg.ix φ iEdg X = I F 0 ..^ N
11 trlsegvdeg.iy φ iEdg Y = F N I F N
12 trlsegvdeg.iz φ iEdg Z = I F 0 N
13 eupth2lem3.o φ x V | ¬ 2 VtxDeg X x = if P 0 = P N P 0 P N
14 eupth2lem3lem3.e φ if- P N = P N + 1 I F N = P N P N P N + 1 I F N
15 eupth2lem3lem4.i φ I F N 𝒫 V
16 fvexd φ P N P N + 1 P N = U F N V
17 5 ad2antrr φ P N P N + 1 P N = U U V
18 1 2 3 4 5 6 trlsegvdeglem1 φ P N V P N + 1 V
19 18 simprd φ P N + 1 V
20 19 ad2antrr φ P N P N + 1 P N = U P N + 1 V
21 neeq1 P N = U P N P N + 1 U P N + 1
22 21 biimpcd P N P N + 1 P N = U U P N + 1
23 22 adantl φ P N P N + 1 P N = U U P N + 1
24 23 imp φ P N P N + 1 P N = U U P N + 1
25 15 ad2antrr φ P N P N + 1 P N = U I F N 𝒫 V
26 11 ad2antrr φ P N P N + 1 P N = U iEdg Y = F N I F N
27 14 adantr φ P N P N + 1 if- P N = P N + 1 I F N = P N P N P N + 1 I F N
28 df-ne P N P N + 1 ¬ P N = P N + 1
29 ifpfal ¬ P N = P N + 1 if- P N = P N + 1 I F N = P N P N P N + 1 I F N P N P N + 1 I F N
30 28 29 sylbi P N P N + 1 if- P N = P N + 1 I F N = P N P N P N + 1 I F N P N P N + 1 I F N
31 30 adantl φ P N P N + 1 if- P N = P N + 1 I F N = P N P N P N + 1 I F N P N P N + 1 I F N
32 preq1 P N = U P N P N + 1 = U P N + 1
33 32 sseq1d P N = U P N P N + 1 I F N U P N + 1 I F N
34 33 biimpcd P N P N + 1 I F N P N = U U P N + 1 I F N
35 31 34 syl6bi φ P N P N + 1 if- P N = P N + 1 I F N = P N P N P N + 1 I F N P N = U U P N + 1 I F N
36 27 35 mpd φ P N P N + 1 P N = U U P N + 1 I F N
37 36 imp φ P N P N + 1 P N = U U P N + 1 I F N
38 8 ad2antrr φ P N P N + 1 P N = U Vtx Y = V
39 16 17 20 24 25 26 37 38 1hegrvtxdg1 φ P N P N + 1 P N = U VtxDeg Y U = 1
40 39 oveq2d φ P N P N + 1 P N = U VtxDeg X U + VtxDeg Y U = VtxDeg X U + 1
41 40 breq2d φ P N P N + 1 P N = U 2 VtxDeg X U + VtxDeg Y U 2 VtxDeg X U + 1
42 41 notbid φ P N P N + 1 P N = U ¬ 2 VtxDeg X U + VtxDeg Y U ¬ 2 VtxDeg X U + 1
43 1 2 3 4 5 6 7 8 9 10 11 12 eupth2lem3lem1 φ VtxDeg X U 0
44 43 nn0zd φ VtxDeg X U
45 2nn 2
46 45 a1i φ 2
47 1lt2 1 < 2
48 47 a1i φ 1 < 2
49 ndvdsp1 VtxDeg X U 2 1 < 2 2 VtxDeg X U ¬ 2 VtxDeg X U + 1
50 44 46 48 49 syl3anc φ 2 VtxDeg X U ¬ 2 VtxDeg X U + 1
51 50 con2d φ 2 VtxDeg X U + 1 ¬ 2 VtxDeg X U
52 1z 1
53 n2dvds1 ¬ 2 1
54 opoe VtxDeg X U ¬ 2 VtxDeg X U 1 ¬ 2 1 2 VtxDeg X U + 1
55 52 53 54 mpanr12 VtxDeg X U ¬ 2 VtxDeg X U 2 VtxDeg X U + 1
56 55 ex VtxDeg X U ¬ 2 VtxDeg X U 2 VtxDeg X U + 1
57 44 56 syl φ ¬ 2 VtxDeg X U 2 VtxDeg X U + 1
58 51 57 impbid φ 2 VtxDeg X U + 1 ¬ 2 VtxDeg X U
59 fveq2 x = U VtxDeg X x = VtxDeg X U
60 59 breq2d x = U 2 VtxDeg X x 2 VtxDeg X U
61 60 notbid x = U ¬ 2 VtxDeg X x ¬ 2 VtxDeg X U
62 61 elrab3 U V U x V | ¬ 2 VtxDeg X x ¬ 2 VtxDeg X U
63 5 62 syl φ U x V | ¬ 2 VtxDeg X x ¬ 2 VtxDeg X U
64 13 eleq2d φ U x V | ¬ 2 VtxDeg X x U if P 0 = P N P 0 P N
65 58 63 64 3bitr2d φ 2 VtxDeg X U + 1 U if P 0 = P N P 0 P N
66 65 notbid φ ¬ 2 VtxDeg X U + 1 ¬ U if P 0 = P N P 0 P N
67 66 ad2antrr φ P N P N + 1 P N = U ¬ 2 VtxDeg X U + 1 ¬ U if P 0 = P N P 0 P N
68 fvex P N V
69 68 eupth2lem2 P N P N + 1 P N = U ¬ U if P 0 = P N P 0 P N U if P 0 = P N + 1 P 0 P N + 1
70 69 adantll φ P N P N + 1 P N = U ¬ U if P 0 = P N P 0 P N U if P 0 = P N + 1 P 0 P N + 1
71 42 67 70 3bitrd φ P N P N + 1 P N = U ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1
72 71 expcom P N = U φ P N P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1
73 72 eqcoms U = P N φ P N P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1
74 fvexd φ P N P N + 1 P N + 1 = U F N V
75 18 simpld φ P N V
76 75 ad2antrr φ P N P N + 1 P N + 1 = U P N V
77 5 ad2antrr φ P N P N + 1 P N + 1 = U U V
78 neeq2 P N + 1 = U P N P N + 1 P N U
79 78 biimpcd P N P N + 1 P N + 1 = U P N U
80 79 adantl φ P N P N + 1 P N + 1 = U P N U
81 80 imp φ P N P N + 1 P N + 1 = U P N U
82 15 ad2antrr φ P N P N + 1 P N + 1 = U I F N 𝒫 V
83 11 ad2antrr φ P N P N + 1 P N + 1 = U iEdg Y = F N I F N
84 preq2 P N + 1 = U P N P N + 1 = P N U
85 84 sseq1d P N + 1 = U P N P N + 1 I F N P N U I F N
86 85 biimpcd P N P N + 1 I F N P N + 1 = U P N U I F N
87 31 86 syl6bi φ P N P N + 1 if- P N = P N + 1 I F N = P N P N P N + 1 I F N P N + 1 = U P N U I F N
88 27 87 mpd φ P N P N + 1 P N + 1 = U P N U I F N
89 88 imp φ P N P N + 1 P N + 1 = U P N U I F N
90 8 ad2antrr φ P N P N + 1 P N + 1 = U Vtx Y = V
91 74 76 77 81 82 83 89 90 1hegrvtxdg1r φ P N P N + 1 P N + 1 = U VtxDeg Y U = 1
92 91 oveq2d φ P N P N + 1 P N + 1 = U VtxDeg X U + VtxDeg Y U = VtxDeg X U + 1
93 92 breq2d φ P N P N + 1 P N + 1 = U 2 VtxDeg X U + VtxDeg Y U 2 VtxDeg X U + 1
94 93 notbid φ P N P N + 1 P N + 1 = U ¬ 2 VtxDeg X U + VtxDeg Y U ¬ 2 VtxDeg X U + 1
95 66 ad2antrr φ P N P N + 1 P N + 1 = U ¬ 2 VtxDeg X U + 1 ¬ U if P 0 = P N P 0 P N
96 necom P N P N + 1 P N + 1 P N
97 fvex P N + 1 V
98 97 eupth2lem2 P N + 1 P N P N + 1 = U ¬ U if P 0 = P N + 1 P 0 P N + 1 U if P 0 = P N P 0 P N
99 96 98 sylanb P N P N + 1 P N + 1 = U ¬ U if P 0 = P N + 1 P 0 P N + 1 U if P 0 = P N P 0 P N
100 99 con1bid P N P N + 1 P N + 1 = U ¬ U if P 0 = P N P 0 P N U if P 0 = P N + 1 P 0 P N + 1
101 100 adantll φ P N P N + 1 P N + 1 = U ¬ U if P 0 = P N P 0 P N U if P 0 = P N + 1 P 0 P N + 1
102 94 95 101 3bitrd φ P N P N + 1 P N + 1 = U ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1
103 102 expcom P N + 1 = U φ P N P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1
104 103 eqcoms U = P N + 1 φ P N P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1
105 73 104 jaoi U = P N U = P N + 1 φ P N P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1
106 105 com12 φ P N P N + 1 U = P N U = P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1
107 106 3impia φ P N P N + 1 U = P N U = P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1