| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlsegvdeg.v |
|- V = ( Vtx ` G ) |
| 2 |
|
trlsegvdeg.i |
|- I = ( iEdg ` G ) |
| 3 |
|
trlsegvdeg.f |
|- ( ph -> Fun I ) |
| 4 |
|
trlsegvdeg.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
| 5 |
|
trlsegvdeg.u |
|- ( ph -> U e. V ) |
| 6 |
|
trlsegvdeg.w |
|- ( ph -> F ( Trails ` G ) P ) |
| 7 |
|
trlsegvdeg.vx |
|- ( ph -> ( Vtx ` X ) = V ) |
| 8 |
|
trlsegvdeg.vy |
|- ( ph -> ( Vtx ` Y ) = V ) |
| 9 |
|
trlsegvdeg.vz |
|- ( ph -> ( Vtx ` Z ) = V ) |
| 10 |
|
trlsegvdeg.ix |
|- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| 11 |
|
trlsegvdeg.iy |
|- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
| 12 |
|
trlsegvdeg.iz |
|- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
| 13 |
|
eupth2lem3.o |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) |
| 14 |
|
eupth2lem3lem3.e |
|- ( ph -> if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 15 |
|
eupth2lem3lem4.i |
|- ( ph -> ( I ` ( F ` N ) ) e. ~P V ) |
| 16 |
|
fvexd |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( F ` N ) e. _V ) |
| 17 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> U e. V ) |
| 18 |
1 2 3 4 5 6
|
trlsegvdeglem1 |
|- ( ph -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) |
| 19 |
18
|
simprd |
|- ( ph -> ( P ` ( N + 1 ) ) e. V ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( P ` ( N + 1 ) ) e. V ) |
| 21 |
|
neeq1 |
|- ( ( P ` N ) = U -> ( ( P ` N ) =/= ( P ` ( N + 1 ) ) <-> U =/= ( P ` ( N + 1 ) ) ) ) |
| 22 |
21
|
biimpcd |
|- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( ( P ` N ) = U -> U =/= ( P ` ( N + 1 ) ) ) ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( P ` N ) = U -> U =/= ( P ` ( N + 1 ) ) ) ) |
| 24 |
23
|
imp |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> U =/= ( P ` ( N + 1 ) ) ) |
| 25 |
15
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( I ` ( F ` N ) ) e. ~P V ) |
| 26 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
| 27 |
14
|
adantr |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 28 |
|
df-ne |
|- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) <-> -. ( P ` N ) = ( P ` ( N + 1 ) ) ) |
| 29 |
|
ifpfal |
|- ( -. ( P ` N ) = ( P ` ( N + 1 ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) <-> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 30 |
28 29
|
sylbi |
|- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) <-> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) <-> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 32 |
|
preq1 |
|- ( ( P ` N ) = U -> { ( P ` N ) , ( P ` ( N + 1 ) ) } = { U , ( P ` ( N + 1 ) ) } ) |
| 33 |
32
|
sseq1d |
|- ( ( P ` N ) = U -> ( { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) <-> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 34 |
33
|
biimpcd |
|- ( { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) -> ( ( P ` N ) = U -> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 35 |
31 34
|
biimtrdi |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) -> ( ( P ` N ) = U -> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) ) |
| 36 |
27 35
|
mpd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( P ` N ) = U -> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 37 |
36
|
imp |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) |
| 38 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( Vtx ` Y ) = V ) |
| 39 |
16 17 20 24 25 26 37 38
|
1hegrvtxdg1 |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( ( VtxDeg ` Y ) ` U ) = 1 ) |
| 40 |
39
|
oveq2d |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) = ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) |
| 41 |
40
|
breq2d |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 42 |
41
|
notbid |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 43 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem1 |
|- ( ph -> ( ( VtxDeg ` X ) ` U ) e. NN0 ) |
| 44 |
43
|
nn0zd |
|- ( ph -> ( ( VtxDeg ` X ) ` U ) e. ZZ ) |
| 45 |
|
2nn |
|- 2 e. NN |
| 46 |
45
|
a1i |
|- ( ph -> 2 e. NN ) |
| 47 |
|
1lt2 |
|- 1 < 2 |
| 48 |
47
|
a1i |
|- ( ph -> 1 < 2 ) |
| 49 |
|
ndvdsp1 |
|- ( ( ( ( VtxDeg ` X ) ` U ) e. ZZ /\ 2 e. NN /\ 1 < 2 ) -> ( 2 || ( ( VtxDeg ` X ) ` U ) -> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 50 |
44 46 48 49
|
syl3anc |
|- ( ph -> ( 2 || ( ( VtxDeg ` X ) ` U ) -> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 51 |
50
|
con2d |
|- ( ph -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) -> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 52 |
|
1z |
|- 1 e. ZZ |
| 53 |
|
n2dvds1 |
|- -. 2 || 1 |
| 54 |
|
opoe |
|- ( ( ( ( ( VtxDeg ` X ) ` U ) e. ZZ /\ -. 2 || ( ( VtxDeg ` X ) ` U ) ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) |
| 55 |
52 53 54
|
mpanr12 |
|- ( ( ( ( VtxDeg ` X ) ` U ) e. ZZ /\ -. 2 || ( ( VtxDeg ` X ) ` U ) ) -> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) |
| 56 |
55
|
ex |
|- ( ( ( VtxDeg ` X ) ` U ) e. ZZ -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) -> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 57 |
44 56
|
syl |
|- ( ph -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) -> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 58 |
51 57
|
impbid |
|- ( ph -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 59 |
|
fveq2 |
|- ( x = U -> ( ( VtxDeg ` X ) ` x ) = ( ( VtxDeg ` X ) ` U ) ) |
| 60 |
59
|
breq2d |
|- ( x = U -> ( 2 || ( ( VtxDeg ` X ) ` x ) <-> 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 61 |
60
|
notbid |
|- ( x = U -> ( -. 2 || ( ( VtxDeg ` X ) ` x ) <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 62 |
61
|
elrab3 |
|- ( U e. V -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 63 |
5 62
|
syl |
|- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 64 |
13
|
eleq2d |
|- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 65 |
58 63 64
|
3bitr2d |
|- ( ph -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 66 |
65
|
notbid |
|- ( ph -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 67 |
66
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 68 |
|
fvex |
|- ( P ` N ) e. _V |
| 69 |
68
|
eupth2lem2 |
|- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( P ` N ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 70 |
69
|
adantll |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 71 |
42 67 70
|
3bitrd |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 72 |
71
|
expcom |
|- ( ( P ` N ) = U -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 73 |
72
|
eqcoms |
|- ( U = ( P ` N ) -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 74 |
|
fvexd |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( F ` N ) e. _V ) |
| 75 |
18
|
simpld |
|- ( ph -> ( P ` N ) e. V ) |
| 76 |
75
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( P ` N ) e. V ) |
| 77 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> U e. V ) |
| 78 |
|
neeq2 |
|- ( ( P ` ( N + 1 ) ) = U -> ( ( P ` N ) =/= ( P ` ( N + 1 ) ) <-> ( P ` N ) =/= U ) ) |
| 79 |
78
|
biimpcd |
|- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( ( P ` ( N + 1 ) ) = U -> ( P ` N ) =/= U ) ) |
| 80 |
79
|
adantl |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( P ` ( N + 1 ) ) = U -> ( P ` N ) =/= U ) ) |
| 81 |
80
|
imp |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( P ` N ) =/= U ) |
| 82 |
15
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( I ` ( F ` N ) ) e. ~P V ) |
| 83 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
| 84 |
|
preq2 |
|- ( ( P ` ( N + 1 ) ) = U -> { ( P ` N ) , ( P ` ( N + 1 ) ) } = { ( P ` N ) , U } ) |
| 85 |
84
|
sseq1d |
|- ( ( P ` ( N + 1 ) ) = U -> ( { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) <-> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) ) |
| 86 |
85
|
biimpcd |
|- ( { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) -> ( ( P ` ( N + 1 ) ) = U -> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) ) |
| 87 |
31 86
|
biimtrdi |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) -> ( ( P ` ( N + 1 ) ) = U -> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) ) ) |
| 88 |
27 87
|
mpd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( P ` ( N + 1 ) ) = U -> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) ) |
| 89 |
88
|
imp |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) |
| 90 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( Vtx ` Y ) = V ) |
| 91 |
74 76 77 81 82 83 89 90
|
1hegrvtxdg1r |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( ( VtxDeg ` Y ) ` U ) = 1 ) |
| 92 |
91
|
oveq2d |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) = ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) |
| 93 |
92
|
breq2d |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 94 |
93
|
notbid |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 95 |
66
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 96 |
|
necom |
|- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) <-> ( P ` ( N + 1 ) ) =/= ( P ` N ) ) |
| 97 |
|
fvex |
|- ( P ` ( N + 1 ) ) e. _V |
| 98 |
97
|
eupth2lem2 |
|- ( ( ( P ` ( N + 1 ) ) =/= ( P ` N ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 99 |
96 98
|
sylanb |
|- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 100 |
99
|
con1bid |
|- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 101 |
100
|
adantll |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 102 |
94 95 101
|
3bitrd |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 103 |
102
|
expcom |
|- ( ( P ` ( N + 1 ) ) = U -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 104 |
103
|
eqcoms |
|- ( U = ( P ` ( N + 1 ) ) -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 105 |
73 104
|
jaoi |
|- ( ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 106 |
105
|
com12 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 107 |
106
|
3impia |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |