| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1monply1.1 |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
| 2 |
|
evls1monply1.2 |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 3 |
|
evls1monply1.3 |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
| 4 |
|
evls1monply1.4 |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 5 |
|
evls1monply1.5 |
⊢ 𝑋 = ( var1 ‘ 𝑈 ) |
| 6 |
|
evls1monply1.6 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 7 |
|
evls1monply1.7 |
⊢ ∧ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 8 |
|
evls1monply1.8 |
⊢ ∗ = ( ·𝑠 ‘ 𝑊 ) |
| 9 |
|
evls1monply1.9 |
⊢ · = ( .r ‘ 𝑆 ) |
| 10 |
|
evls1monply1.10 |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 11 |
|
evls1monply1.11 |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 12 |
|
evls1monply1.12 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑅 ) |
| 13 |
|
evls1monply1.13 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 14 |
|
evls1monply1.14 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 16 |
|
eqid |
⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) |
| 17 |
16 15
|
mgpbas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( mulGrp ‘ 𝑊 ) ) |
| 18 |
4
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 19 |
11 18
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 20 |
3
|
ply1ring |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring ) |
| 21 |
16
|
ringmgp |
⊢ ( 𝑊 ∈ Ring → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
| 22 |
19 20 21
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
| 23 |
5 3 15
|
vr1cl |
⊢ ( 𝑈 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 24 |
19 23
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 25 |
17 6 22 13 24
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑊 ) ) |
| 26 |
1 2 3 4 15 8 9 10 11 12 25 14
|
evls1vsca |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ∗ ( 𝑁 ↑ 𝑋 ) ) ) ‘ 𝑌 ) = ( 𝐴 · ( ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝑌 ) ) ) |
| 27 |
1 4 3 5 2 6 7 10 11 13 14
|
evls1varpwval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝑌 ) = ( 𝑁 ∧ 𝑌 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝑌 ) ) = ( 𝐴 · ( 𝑁 ∧ 𝑌 ) ) ) |
| 29 |
26 28
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ∗ ( 𝑁 ↑ 𝑋 ) ) ) ‘ 𝑌 ) = ( 𝐴 · ( 𝑁 ∧ 𝑌 ) ) ) |