Metamath Proof Explorer


Theorem evls1monply1

Description: Subring evaluation of a scaled monomial. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses evls1monply1.1 𝑄 = ( 𝑆 evalSub1 𝑅 )
evls1monply1.2 𝐾 = ( Base ‘ 𝑆 )
evls1monply1.3 𝑊 = ( Poly1𝑈 )
evls1monply1.4 𝑈 = ( 𝑆s 𝑅 )
evls1monply1.5 𝑋 = ( var1𝑈 )
evls1monply1.6 = ( .g ‘ ( mulGrp ‘ 𝑊 ) )
evls1monply1.7 = ( .g ‘ ( mulGrp ‘ 𝑆 ) )
evls1monply1.8 = ( ·𝑠𝑊 )
evls1monply1.9 · = ( .r𝑆 )
evls1monply1.10 ( 𝜑𝑆 ∈ CRing )
evls1monply1.11 ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evls1monply1.12 ( 𝜑𝐴𝑅 )
evls1monply1.13 ( 𝜑𝑁 ∈ ℕ0 )
evls1monply1.14 ( 𝜑𝑌𝐾 )
Assertion evls1monply1 ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ( 𝑁 𝑋 ) ) ) ‘ 𝑌 ) = ( 𝐴 · ( 𝑁 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 evls1monply1.1 𝑄 = ( 𝑆 evalSub1 𝑅 )
2 evls1monply1.2 𝐾 = ( Base ‘ 𝑆 )
3 evls1monply1.3 𝑊 = ( Poly1𝑈 )
4 evls1monply1.4 𝑈 = ( 𝑆s 𝑅 )
5 evls1monply1.5 𝑋 = ( var1𝑈 )
6 evls1monply1.6 = ( .g ‘ ( mulGrp ‘ 𝑊 ) )
7 evls1monply1.7 = ( .g ‘ ( mulGrp ‘ 𝑆 ) )
8 evls1monply1.8 = ( ·𝑠𝑊 )
9 evls1monply1.9 · = ( .r𝑆 )
10 evls1monply1.10 ( 𝜑𝑆 ∈ CRing )
11 evls1monply1.11 ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
12 evls1monply1.12 ( 𝜑𝐴𝑅 )
13 evls1monply1.13 ( 𝜑𝑁 ∈ ℕ0 )
14 evls1monply1.14 ( 𝜑𝑌𝐾 )
15 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
16 eqid ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 )
17 16 15 mgpbas ( Base ‘ 𝑊 ) = ( Base ‘ ( mulGrp ‘ 𝑊 ) )
18 4 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
19 11 18 syl ( 𝜑𝑈 ∈ Ring )
20 3 ply1ring ( 𝑈 ∈ Ring → 𝑊 ∈ Ring )
21 16 ringmgp ( 𝑊 ∈ Ring → ( mulGrp ‘ 𝑊 ) ∈ Mnd )
22 19 20 21 3syl ( 𝜑 → ( mulGrp ‘ 𝑊 ) ∈ Mnd )
23 5 3 15 vr1cl ( 𝑈 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑊 ) )
24 19 23 syl ( 𝜑𝑋 ∈ ( Base ‘ 𝑊 ) )
25 17 6 22 13 24 mulgnn0cld ( 𝜑 → ( 𝑁 𝑋 ) ∈ ( Base ‘ 𝑊 ) )
26 1 2 3 4 15 8 9 10 11 12 25 14 evls1vsca ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ( 𝑁 𝑋 ) ) ) ‘ 𝑌 ) = ( 𝐴 · ( ( 𝑄 ‘ ( 𝑁 𝑋 ) ) ‘ 𝑌 ) ) )
27 1 4 3 5 2 6 7 10 11 13 14 evls1varpwval ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 𝑋 ) ) ‘ 𝑌 ) = ( 𝑁 𝑌 ) )
28 27 oveq2d ( 𝜑 → ( 𝐴 · ( ( 𝑄 ‘ ( 𝑁 𝑋 ) ) ‘ 𝑌 ) ) = ( 𝐴 · ( 𝑁 𝑌 ) ) )
29 26 28 eqtrd ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ( 𝑁 𝑋 ) ) ) ‘ 𝑌 ) = ( 𝐴 · ( 𝑁 𝑌 ) ) )