Metamath Proof Explorer


Theorem evls1monply1

Description: Subring evaluation of a scaled monomial. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses evls1monply1.1 Q = S evalSub 1 R
evls1monply1.2 K = Base S
evls1monply1.3 W = Poly 1 U
evls1monply1.4 U = S 𝑠 R
evls1monply1.5 X = var 1 U
evls1monply1.6 × ˙ = mulGrp W
evls1monply1.7 ˙ = mulGrp S
evls1monply1.8 ˙ = W
evls1monply1.9 · ˙ = S
evls1monply1.10 φ S CRing
evls1monply1.11 φ R SubRing S
evls1monply1.12 φ A R
evls1monply1.13 φ N 0
evls1monply1.14 φ Y K
Assertion evls1monply1 φ Q A ˙ N × ˙ X Y = A · ˙ N ˙ Y

Proof

Step Hyp Ref Expression
1 evls1monply1.1 Q = S evalSub 1 R
2 evls1monply1.2 K = Base S
3 evls1monply1.3 W = Poly 1 U
4 evls1monply1.4 U = S 𝑠 R
5 evls1monply1.5 X = var 1 U
6 evls1monply1.6 × ˙ = mulGrp W
7 evls1monply1.7 ˙ = mulGrp S
8 evls1monply1.8 ˙ = W
9 evls1monply1.9 · ˙ = S
10 evls1monply1.10 φ S CRing
11 evls1monply1.11 φ R SubRing S
12 evls1monply1.12 φ A R
13 evls1monply1.13 φ N 0
14 evls1monply1.14 φ Y K
15 eqid Base W = Base W
16 eqid mulGrp W = mulGrp W
17 16 15 mgpbas Base W = Base mulGrp W
18 4 subrgring R SubRing S U Ring
19 11 18 syl φ U Ring
20 3 ply1ring U Ring W Ring
21 16 ringmgp W Ring mulGrp W Mnd
22 19 20 21 3syl φ mulGrp W Mnd
23 5 3 15 vr1cl U Ring X Base W
24 19 23 syl φ X Base W
25 17 6 22 13 24 mulgnn0cld φ N × ˙ X Base W
26 1 2 3 4 15 8 9 10 11 12 25 14 evls1vsca φ Q A ˙ N × ˙ X Y = A · ˙ Q N × ˙ X Y
27 1 4 3 5 2 6 7 10 11 13 14 evls1varpwval φ Q N × ˙ X Y = N ˙ Y
28 27 oveq2d φ A · ˙ Q N × ˙ X Y = A · ˙ N ˙ Y
29 26 28 eqtrd φ Q A ˙ N × ˙ X Y = A · ˙ N ˙ Y