Metamath Proof Explorer


Theorem evls1vsca

Description: Univariate polynomial evaluation of a scalar product of polynomials. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses ressply1evl.q Q=SevalSub1R
ressply1evl.k K=BaseS
ressply1evl.w W=Poly1U
ressply1evl.u U=S𝑠R
ressply1evl.b B=BaseW
evls1vsca.1 ×˙=W
evls1vsca.2 ·˙=S
evls1vsca.s φSCRing
evls1vsca.r φRSubRingS
evls1vsca.m φAR
evls1vsca.n φNB
evls1vsca.y φCK
Assertion evls1vsca φQA×˙NC=A·˙QNC

Proof

Step Hyp Ref Expression
1 ressply1evl.q Q=SevalSub1R
2 ressply1evl.k K=BaseS
3 ressply1evl.w W=Poly1U
4 ressply1evl.u U=S𝑠R
5 ressply1evl.b B=BaseW
6 evls1vsca.1 ×˙=W
7 evls1vsca.2 ·˙=S
8 evls1vsca.s φSCRing
9 evls1vsca.r φRSubRingS
10 evls1vsca.m φAR
11 evls1vsca.n φNB
12 evls1vsca.y φCK
13 id φφ
14 eqid Poly1S=Poly1S
15 eqid Poly1S𝑠B=Poly1S𝑠B
16 14 4 3 5 9 15 ressply1vsca φARNBAWN=APoly1S𝑠BN
17 13 10 11 16 syl12anc φAWN=APoly1S𝑠BN
18 6 oveqi A×˙N=AWN
19 5 fvexi BV
20 eqid Poly1S=Poly1S
21 15 20 ressvsca BVPoly1S=Poly1S𝑠B
22 19 21 ax-mp Poly1S=Poly1S𝑠B
23 22 oveqi APoly1SN=APoly1S𝑠BN
24 17 18 23 3eqtr4g φA×˙N=APoly1SN
25 24 fveq2d φeval1SA×˙N=eval1SAPoly1SN
26 25 fveq1d φeval1SA×˙NC=eval1SAPoly1SNC
27 eqid eval1S=eval1S
28 1 2 3 4 5 27 8 9 ressply1evl φQ=eval1SB
29 28 fveq1d φQA×˙N=eval1SBA×˙N
30 4 subrgcrng SCRingRSubRingSUCRing
31 8 9 30 syl2anc φUCRing
32 crngring UCRingURing
33 3 ply1lmod URingWLMod
34 31 32 33 3syl φWLMod
35 2 subrgss RSubRingSRK
36 9 35 syl φRK
37 4 2 ressbas2 RKR=BaseU
38 36 37 syl φR=BaseU
39 4 ovexi UV
40 3 ply1sca UVU=ScalarW
41 39 40 mp1i φU=ScalarW
42 41 fveq2d φBaseU=BaseScalarW
43 38 42 eqtrd φR=BaseScalarW
44 10 43 eleqtrd φABaseScalarW
45 eqid ScalarW=ScalarW
46 eqid BaseScalarW=BaseScalarW
47 5 45 6 46 lmodvscl WLModABaseScalarWNBA×˙NB
48 34 44 11 47 syl3anc φA×˙NB
49 48 fvresd φeval1SBA×˙N=eval1SA×˙N
50 29 49 eqtr2d φeval1SA×˙N=QA×˙N
51 50 fveq1d φeval1SA×˙NC=QA×˙NC
52 eqid BasePoly1S=BasePoly1S
53 eqid PwSer1U=PwSer1U
54 eqid BasePwSer1U=BasePwSer1U
55 14 4 3 5 9 53 54 52 ressply1bas2 φB=BasePwSer1UBasePoly1S
56 inss2 BasePwSer1UBasePoly1SBasePoly1S
57 55 56 eqsstrdi φBBasePoly1S
58 57 11 sseldd φNBasePoly1S
59 28 fveq1d φQN=eval1SBN
60 11 fvresd φeval1SBN=eval1SN
61 59 60 eqtr2d φeval1SN=QN
62 61 fveq1d φeval1SNC=QNC
63 58 62 jca φNBasePoly1Seval1SNC=QNC
64 36 10 sseldd φAK
65 27 14 2 52 8 12 63 64 20 7 evl1vsd φAPoly1SNBasePoly1Seval1SAPoly1SNC=A·˙QNC
66 65 simprd φeval1SAPoly1SNC=A·˙QNC
67 26 51 66 3eqtr3d φQA×˙NC=A·˙QNC