Description: Univariate polynomial evaluation of a scalar product of polynomials. (Contributed by Thierry Arnoux, 25-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressply1evl.q | |
|
ressply1evl.k | |
||
ressply1evl.w | |
||
ressply1evl.u | |
||
ressply1evl.b | |
||
evls1vsca.1 | |
||
evls1vsca.2 | |
||
evls1vsca.s | |
||
evls1vsca.r | |
||
evls1vsca.m | |
||
evls1vsca.n | |
||
evls1vsca.y | |
||
Assertion | evls1vsca | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressply1evl.q | |
|
2 | ressply1evl.k | |
|
3 | ressply1evl.w | |
|
4 | ressply1evl.u | |
|
5 | ressply1evl.b | |
|
6 | evls1vsca.1 | |
|
7 | evls1vsca.2 | |
|
8 | evls1vsca.s | |
|
9 | evls1vsca.r | |
|
10 | evls1vsca.m | |
|
11 | evls1vsca.n | |
|
12 | evls1vsca.y | |
|
13 | id | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 14 4 3 5 9 15 | ressply1vsca | |
17 | 13 10 11 16 | syl12anc | |
18 | 6 | oveqi | |
19 | 5 | fvexi | |
20 | eqid | |
|
21 | 15 20 | ressvsca | |
22 | 19 21 | ax-mp | |
23 | 22 | oveqi | |
24 | 17 18 23 | 3eqtr4g | |
25 | 24 | fveq2d | |
26 | 25 | fveq1d | |
27 | eqid | |
|
28 | 1 2 3 4 5 27 8 9 | ressply1evl | |
29 | 28 | fveq1d | |
30 | 4 | subrgcrng | |
31 | 8 9 30 | syl2anc | |
32 | crngring | |
|
33 | 3 | ply1lmod | |
34 | 31 32 33 | 3syl | |
35 | 2 | subrgss | |
36 | 9 35 | syl | |
37 | 4 2 | ressbas2 | |
38 | 36 37 | syl | |
39 | 4 | ovexi | |
40 | 3 | ply1sca | |
41 | 39 40 | mp1i | |
42 | 41 | fveq2d | |
43 | 38 42 | eqtrd | |
44 | 10 43 | eleqtrd | |
45 | eqid | |
|
46 | eqid | |
|
47 | 5 45 6 46 | lmodvscl | |
48 | 34 44 11 47 | syl3anc | |
49 | 48 | fvresd | |
50 | 29 49 | eqtr2d | |
51 | 50 | fveq1d | |
52 | eqid | |
|
53 | eqid | |
|
54 | eqid | |
|
55 | 14 4 3 5 9 53 54 52 | ressply1bas2 | |
56 | inss2 | |
|
57 | 55 56 | eqsstrdi | |
58 | 57 11 | sseldd | |
59 | 28 | fveq1d | |
60 | 11 | fvresd | |
61 | 59 60 | eqtr2d | |
62 | 61 | fveq1d | |
63 | 58 62 | jca | |
64 | 36 10 | sseldd | |
65 | 27 14 2 52 8 12 63 64 20 7 | evl1vsd | |
66 | 65 | simprd | |
67 | 26 51 66 | 3eqtr3d | |