Metamath Proof Explorer


Theorem ressply1vsca

Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressply1.s S=Poly1R
ressply1.h H=R𝑠T
ressply1.u U=Poly1H
ressply1.b B=BaseU
ressply1.2 φTSubRingR
ressply1.p P=S𝑠B
Assertion ressply1vsca φXTYBXUY=XPY

Proof

Step Hyp Ref Expression
1 ressply1.s S=Poly1R
2 ressply1.h H=R𝑠T
3 ressply1.u U=Poly1H
4 ressply1.b B=BaseU
5 ressply1.2 φTSubRingR
6 ressply1.p P=S𝑠B
7 eqid 1𝑜mPolyR=1𝑜mPolyR
8 eqid 1𝑜mPolyH=1𝑜mPolyH
9 eqid PwSer1H=PwSer1H
10 3 9 4 ply1bas B=Base1𝑜mPolyH
11 1on 1𝑜On
12 11 a1i φ1𝑜On
13 eqid 1𝑜mPolyR𝑠B=1𝑜mPolyR𝑠B
14 7 2 8 10 12 5 13 ressmplvsca φXTYBX1𝑜mPolyHY=X1𝑜mPolyR𝑠BY
15 eqid U=U
16 3 8 15 ply1vsca U=1𝑜mPolyH
17 16 oveqi XUY=X1𝑜mPolyHY
18 eqid S=S
19 1 7 18 ply1vsca S=1𝑜mPolyR
20 4 fvexi BV
21 6 18 ressvsca BVS=P
22 20 21 ax-mp S=P
23 eqid 1𝑜mPolyR=1𝑜mPolyR
24 13 23 ressvsca BV1𝑜mPolyR=1𝑜mPolyR𝑠B
25 20 24 ax-mp 1𝑜mPolyR=1𝑜mPolyR𝑠B
26 19 22 25 3eqtr3i P=1𝑜mPolyR𝑠B
27 26 oveqi XPY=X1𝑜mPolyR𝑠BY
28 14 17 27 3eqtr4g φXTYBXUY=XPY