Metamath Proof Explorer


Theorem evls1monply1

Description: Subring evaluation of a scaled monomial. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses evls1monply1.1
|- Q = ( S evalSub1 R )
evls1monply1.2
|- K = ( Base ` S )
evls1monply1.3
|- W = ( Poly1 ` U )
evls1monply1.4
|- U = ( S |`s R )
evls1monply1.5
|- X = ( var1 ` U )
evls1monply1.6
|- .^ = ( .g ` ( mulGrp ` W ) )
evls1monply1.7
|- ./\ = ( .g ` ( mulGrp ` S ) )
evls1monply1.8
|- .* = ( .s ` W )
evls1monply1.9
|- .x. = ( .r ` S )
evls1monply1.10
|- ( ph -> S e. CRing )
evls1monply1.11
|- ( ph -> R e. ( SubRing ` S ) )
evls1monply1.12
|- ( ph -> A e. R )
evls1monply1.13
|- ( ph -> N e. NN0 )
evls1monply1.14
|- ( ph -> Y e. K )
Assertion evls1monply1
|- ( ph -> ( ( Q ` ( A .* ( N .^ X ) ) ) ` Y ) = ( A .x. ( N ./\ Y ) ) )

Proof

Step Hyp Ref Expression
1 evls1monply1.1
 |-  Q = ( S evalSub1 R )
2 evls1monply1.2
 |-  K = ( Base ` S )
3 evls1monply1.3
 |-  W = ( Poly1 ` U )
4 evls1monply1.4
 |-  U = ( S |`s R )
5 evls1monply1.5
 |-  X = ( var1 ` U )
6 evls1monply1.6
 |-  .^ = ( .g ` ( mulGrp ` W ) )
7 evls1monply1.7
 |-  ./\ = ( .g ` ( mulGrp ` S ) )
8 evls1monply1.8
 |-  .* = ( .s ` W )
9 evls1monply1.9
 |-  .x. = ( .r ` S )
10 evls1monply1.10
 |-  ( ph -> S e. CRing )
11 evls1monply1.11
 |-  ( ph -> R e. ( SubRing ` S ) )
12 evls1monply1.12
 |-  ( ph -> A e. R )
13 evls1monply1.13
 |-  ( ph -> N e. NN0 )
14 evls1monply1.14
 |-  ( ph -> Y e. K )
15 eqid
 |-  ( Base ` W ) = ( Base ` W )
16 eqid
 |-  ( mulGrp ` W ) = ( mulGrp ` W )
17 16 15 mgpbas
 |-  ( Base ` W ) = ( Base ` ( mulGrp ` W ) )
18 4 subrgring
 |-  ( R e. ( SubRing ` S ) -> U e. Ring )
19 11 18 syl
 |-  ( ph -> U e. Ring )
20 3 ply1ring
 |-  ( U e. Ring -> W e. Ring )
21 16 ringmgp
 |-  ( W e. Ring -> ( mulGrp ` W ) e. Mnd )
22 19 20 21 3syl
 |-  ( ph -> ( mulGrp ` W ) e. Mnd )
23 5 3 15 vr1cl
 |-  ( U e. Ring -> X e. ( Base ` W ) )
24 19 23 syl
 |-  ( ph -> X e. ( Base ` W ) )
25 17 6 22 13 24 mulgnn0cld
 |-  ( ph -> ( N .^ X ) e. ( Base ` W ) )
26 1 2 3 4 15 8 9 10 11 12 25 14 evls1vsca
 |-  ( ph -> ( ( Q ` ( A .* ( N .^ X ) ) ) ` Y ) = ( A .x. ( ( Q ` ( N .^ X ) ) ` Y ) ) )
27 1 4 3 5 2 6 7 10 11 13 14 evls1varpwval
 |-  ( ph -> ( ( Q ` ( N .^ X ) ) ` Y ) = ( N ./\ Y ) )
28 27 oveq2d
 |-  ( ph -> ( A .x. ( ( Q ` ( N .^ X ) ) ` Y ) ) = ( A .x. ( N ./\ Y ) ) )
29 26 28 eqtrd
 |-  ( ph -> ( ( Q ` ( A .* ( N .^ X ) ) ) ` Y ) = ( A .x. ( N ./\ Y ) ) )