| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 4 ↑ 𝑘 )  =  ( 4 ↑ 0 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑘  =  0  →  ( ( 4 ↑ 𝑘 )  +  2 )  =  ( ( 4 ↑ 0 )  +  2 ) ) | 
						
							| 3 | 2 | breq2d | ⊢ ( 𝑘  =  0  →  ( 3  ∥  ( ( 4 ↑ 𝑘 )  +  2 )  ↔  3  ∥  ( ( 4 ↑ 0 )  +  2 ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 4 ↑ 𝑘 )  =  ( 4 ↑ 𝑛 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 4 ↑ 𝑘 )  +  2 )  =  ( ( 4 ↑ 𝑛 )  +  2 ) ) | 
						
							| 6 | 5 | breq2d | ⊢ ( 𝑘  =  𝑛  →  ( 3  ∥  ( ( 4 ↑ 𝑘 )  +  2 )  ↔  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 4 ↑ 𝑘 )  =  ( 4 ↑ ( 𝑛  +  1 ) ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 4 ↑ 𝑘 )  +  2 )  =  ( ( 4 ↑ ( 𝑛  +  1 ) )  +  2 ) ) | 
						
							| 9 | 8 | breq2d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 3  ∥  ( ( 4 ↑ 𝑘 )  +  2 )  ↔  3  ∥  ( ( 4 ↑ ( 𝑛  +  1 ) )  +  2 ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑘  =  𝑁  →  ( 4 ↑ 𝑘 )  =  ( 4 ↑ 𝑁 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑘  =  𝑁  →  ( ( 4 ↑ 𝑘 )  +  2 )  =  ( ( 4 ↑ 𝑁 )  +  2 ) ) | 
						
							| 12 | 11 | breq2d | ⊢ ( 𝑘  =  𝑁  →  ( 3  ∥  ( ( 4 ↑ 𝑘 )  +  2 )  ↔  3  ∥  ( ( 4 ↑ 𝑁 )  +  2 ) ) ) | 
						
							| 13 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 14 |  | iddvds | ⊢ ( 3  ∈  ℤ  →  3  ∥  3 ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ 3  ∥  3 | 
						
							| 16 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 17 | 16 | numexp0 | ⊢ ( 4 ↑ 0 )  =  1 | 
						
							| 18 | 17 | oveq1i | ⊢ ( ( 4 ↑ 0 )  +  2 )  =  ( 1  +  2 ) | 
						
							| 19 |  | 1p2e3 | ⊢ ( 1  +  2 )  =  3 | 
						
							| 20 | 18 19 | eqtri | ⊢ ( ( 4 ↑ 0 )  +  2 )  =  3 | 
						
							| 21 | 15 20 | breqtrri | ⊢ 3  ∥  ( ( 4 ↑ 0 )  +  2 ) | 
						
							| 22 | 13 | a1i | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  3  ∈  ℤ ) | 
						
							| 23 | 16 | a1i | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  4  ∈  ℕ0 ) | 
						
							| 24 |  | simpl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 25 | 23 24 | nn0expcld | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  ( 4 ↑ 𝑛 )  ∈  ℕ0 ) | 
						
							| 26 | 25 | nn0zd | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  ( 4 ↑ 𝑛 )  ∈  ℤ ) | 
						
							| 27 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  2  ∈  ℤ ) | 
						
							| 29 | 26 28 | zaddcld | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  ( ( 4 ↑ 𝑛 )  +  2 )  ∈  ℤ ) | 
						
							| 30 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 31 | 30 | a1i | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  4  ∈  ℤ ) | 
						
							| 32 | 29 31 | zmulcld | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  ( ( ( 4 ↑ 𝑛 )  +  2 )  ·  4 )  ∈  ℤ ) | 
						
							| 33 | 22 28 | zmulcld | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  ( 3  ·  2 )  ∈  ℤ ) | 
						
							| 34 | 16 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  4  ∈  ℕ0 ) | 
						
							| 35 |  | id | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℕ0 ) | 
						
							| 36 | 34 35 | nn0expcld | ⊢ ( 𝑛  ∈  ℕ0  →  ( 4 ↑ 𝑛 )  ∈  ℕ0 ) | 
						
							| 37 | 36 | nn0zd | ⊢ ( 𝑛  ∈  ℕ0  →  ( 4 ↑ 𝑛 )  ∈  ℤ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  ( 4 ↑ 𝑛 )  ∈  ℤ ) | 
						
							| 39 | 38 28 | zaddcld | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  ( ( 4 ↑ 𝑛 )  +  2 )  ∈  ℤ ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) ) | 
						
							| 41 | 22 39 31 40 | dvdsmultr1d | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  3  ∥  ( ( ( 4 ↑ 𝑛 )  +  2 )  ·  4 ) ) | 
						
							| 42 |  | dvdsmul1 | ⊢ ( ( 3  ∈  ℤ  ∧  2  ∈  ℤ )  →  3  ∥  ( 3  ·  2 ) ) | 
						
							| 43 | 13 27 42 | mp2an | ⊢ 3  ∥  ( 3  ·  2 ) | 
						
							| 44 | 43 | a1i | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  3  ∥  ( 3  ·  2 ) ) | 
						
							| 45 | 22 32 33 41 44 | dvds2subd | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  3  ∥  ( ( ( ( 4 ↑ 𝑛 )  +  2 )  ·  4 )  −  ( 3  ·  2 ) ) ) | 
						
							| 46 | 36 | nn0cnd | ⊢ ( 𝑛  ∈  ℕ0  →  ( 4 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 47 |  | 2cnd | ⊢ ( 𝑛  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 48 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 49 | 48 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  4  ∈  ℂ ) | 
						
							| 50 | 46 47 49 | adddird | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( 4 ↑ 𝑛 )  +  2 )  ·  4 )  =  ( ( ( 4 ↑ 𝑛 )  ·  4 )  +  ( 2  ·  4 ) ) ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( ( 4 ↑ 𝑛 )  +  2 )  ·  4 )  −  ( 2  ·  3 ) )  =  ( ( ( ( 4 ↑ 𝑛 )  ·  4 )  +  ( 2  ·  4 ) )  −  ( 2  ·  3 ) ) ) | 
						
							| 52 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 53 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 54 | 52 53 | mulcomi | ⊢ ( 3  ·  2 )  =  ( 2  ·  3 ) | 
						
							| 55 | 54 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  ( 3  ·  2 )  =  ( 2  ·  3 ) ) | 
						
							| 56 | 55 | oveq2d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( ( 4 ↑ 𝑛 )  +  2 )  ·  4 )  −  ( 3  ·  2 ) )  =  ( ( ( ( 4 ↑ 𝑛 )  +  2 )  ·  4 )  −  ( 2  ·  3 ) ) ) | 
						
							| 57 | 49 35 | expp1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( 4 ↑ ( 𝑛  +  1 ) )  =  ( ( 4 ↑ 𝑛 )  ·  4 ) ) | 
						
							| 58 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 59 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 60 | 52 58 59 | addcomli | ⊢ ( 1  +  3 )  =  4 | 
						
							| 61 | 60 | eqcomi | ⊢ 4  =  ( 1  +  3 ) | 
						
							| 62 | 58 52 61 | mvrraddi | ⊢ ( 4  −  3 )  =  1 | 
						
							| 63 | 62 | oveq2i | ⊢ ( 2  ·  ( 4  −  3 ) )  =  ( 2  ·  1 ) | 
						
							| 64 | 53 48 52 | subdii | ⊢ ( 2  ·  ( 4  −  3 ) )  =  ( ( 2  ·  4 )  −  ( 2  ·  3 ) ) | 
						
							| 65 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 66 | 63 64 65 | 3eqtr3ri | ⊢ 2  =  ( ( 2  ·  4 )  −  ( 2  ·  3 ) ) | 
						
							| 67 | 66 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  2  =  ( ( 2  ·  4 )  −  ( 2  ·  3 ) ) ) | 
						
							| 68 | 57 67 | oveq12d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 4 ↑ ( 𝑛  +  1 ) )  +  2 )  =  ( ( ( 4 ↑ 𝑛 )  ·  4 )  +  ( ( 2  ·  4 )  −  ( 2  ·  3 ) ) ) ) | 
						
							| 69 | 46 49 | mulcld | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 4 ↑ 𝑛 )  ·  4 )  ∈  ℂ ) | 
						
							| 70 | 47 49 | mulcld | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  4 )  ∈  ℂ ) | 
						
							| 71 | 52 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  3  ∈  ℂ ) | 
						
							| 72 | 47 71 | mulcld | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  3 )  ∈  ℂ ) | 
						
							| 73 | 69 70 72 | addsubassd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( ( 4 ↑ 𝑛 )  ·  4 )  +  ( 2  ·  4 ) )  −  ( 2  ·  3 ) )  =  ( ( ( 4 ↑ 𝑛 )  ·  4 )  +  ( ( 2  ·  4 )  −  ( 2  ·  3 ) ) ) ) | 
						
							| 74 | 68 73 | eqtr4d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 4 ↑ ( 𝑛  +  1 ) )  +  2 )  =  ( ( ( ( 4 ↑ 𝑛 )  ·  4 )  +  ( 2  ·  4 ) )  −  ( 2  ·  3 ) ) ) | 
						
							| 75 | 51 56 74 | 3eqtr4rd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 4 ↑ ( 𝑛  +  1 ) )  +  2 )  =  ( ( ( ( 4 ↑ 𝑛 )  +  2 )  ·  4 )  −  ( 3  ·  2 ) ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  ( ( 4 ↑ ( 𝑛  +  1 ) )  +  2 )  =  ( ( ( ( 4 ↑ 𝑛 )  +  2 )  ·  4 )  −  ( 3  ·  2 ) ) ) | 
						
							| 77 | 45 76 | breqtrrd | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  3  ∥  ( ( 4 ↑ 𝑛 )  +  2 ) )  →  3  ∥  ( ( 4 ↑ ( 𝑛  +  1 ) )  +  2 ) ) | 
						
							| 78 | 77 | ex | ⊢ ( 𝑛  ∈  ℕ0  →  ( 3  ∥  ( ( 4 ↑ 𝑛 )  +  2 )  →  3  ∥  ( ( 4 ↑ ( 𝑛  +  1 ) )  +  2 ) ) ) | 
						
							| 79 | 3 6 9 12 21 78 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  3  ∥  ( ( 4 ↑ 𝑁 )  +  2 ) ) |