| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( k = 0 -> ( 4 ^ k ) = ( 4 ^ 0 ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( k = 0 -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ 0 ) + 2 ) ) | 
						
							| 3 | 2 | breq2d |  |-  ( k = 0 -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ 0 ) + 2 ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( k = n -> ( 4 ^ k ) = ( 4 ^ n ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( k = n -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ n ) + 2 ) ) | 
						
							| 6 | 5 | breq2d |  |-  ( k = n -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ n ) + 2 ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( k = ( n + 1 ) -> ( 4 ^ k ) = ( 4 ^ ( n + 1 ) ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( k = ( n + 1 ) -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ ( n + 1 ) ) + 2 ) ) | 
						
							| 9 | 8 | breq2d |  |-  ( k = ( n + 1 ) -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ ( n + 1 ) ) + 2 ) ) ) | 
						
							| 10 |  | oveq2 |  |-  ( k = N -> ( 4 ^ k ) = ( 4 ^ N ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( k = N -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ N ) + 2 ) ) | 
						
							| 12 | 11 | breq2d |  |-  ( k = N -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ N ) + 2 ) ) ) | 
						
							| 13 |  | 3z |  |-  3 e. ZZ | 
						
							| 14 |  | iddvds |  |-  ( 3 e. ZZ -> 3 || 3 ) | 
						
							| 15 | 13 14 | ax-mp |  |-  3 || 3 | 
						
							| 16 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 17 | 16 | numexp0 |  |-  ( 4 ^ 0 ) = 1 | 
						
							| 18 | 17 | oveq1i |  |-  ( ( 4 ^ 0 ) + 2 ) = ( 1 + 2 ) | 
						
							| 19 |  | 1p2e3 |  |-  ( 1 + 2 ) = 3 | 
						
							| 20 | 18 19 | eqtri |  |-  ( ( 4 ^ 0 ) + 2 ) = 3 | 
						
							| 21 | 15 20 | breqtrri |  |-  3 || ( ( 4 ^ 0 ) + 2 ) | 
						
							| 22 | 13 | a1i |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 e. ZZ ) | 
						
							| 23 | 16 | a1i |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 4 e. NN0 ) | 
						
							| 24 |  | simpl |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> n e. NN0 ) | 
						
							| 25 | 23 24 | nn0expcld |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 4 ^ n ) e. NN0 ) | 
						
							| 26 | 25 | nn0zd |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 4 ^ n ) e. ZZ ) | 
						
							| 27 |  | 2z |  |-  2 e. ZZ | 
						
							| 28 | 27 | a1i |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 2 e. ZZ ) | 
						
							| 29 | 26 28 | zaddcld |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( 4 ^ n ) + 2 ) e. ZZ ) | 
						
							| 30 |  | 4z |  |-  4 e. ZZ | 
						
							| 31 | 30 | a1i |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 4 e. ZZ ) | 
						
							| 32 | 29 31 | zmulcld |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( ( 4 ^ n ) + 2 ) x. 4 ) e. ZZ ) | 
						
							| 33 | 22 28 | zmulcld |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 3 x. 2 ) e. ZZ ) | 
						
							| 34 | 16 | a1i |  |-  ( n e. NN0 -> 4 e. NN0 ) | 
						
							| 35 |  | id |  |-  ( n e. NN0 -> n e. NN0 ) | 
						
							| 36 | 34 35 | nn0expcld |  |-  ( n e. NN0 -> ( 4 ^ n ) e. NN0 ) | 
						
							| 37 | 36 | nn0zd |  |-  ( n e. NN0 -> ( 4 ^ n ) e. ZZ ) | 
						
							| 38 | 37 | adantr |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 4 ^ n ) e. ZZ ) | 
						
							| 39 | 38 28 | zaddcld |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( 4 ^ n ) + 2 ) e. ZZ ) | 
						
							| 40 |  | simpr |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( 4 ^ n ) + 2 ) ) | 
						
							| 41 | 22 39 31 40 | dvdsmultr1d |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( ( 4 ^ n ) + 2 ) x. 4 ) ) | 
						
							| 42 |  | dvdsmul1 |  |-  ( ( 3 e. ZZ /\ 2 e. ZZ ) -> 3 || ( 3 x. 2 ) ) | 
						
							| 43 | 13 27 42 | mp2an |  |-  3 || ( 3 x. 2 ) | 
						
							| 44 | 43 | a1i |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( 3 x. 2 ) ) | 
						
							| 45 | 22 32 33 41 44 | dvds2subd |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) ) | 
						
							| 46 | 36 | nn0cnd |  |-  ( n e. NN0 -> ( 4 ^ n ) e. CC ) | 
						
							| 47 |  | 2cnd |  |-  ( n e. NN0 -> 2 e. CC ) | 
						
							| 48 |  | 4cn |  |-  4 e. CC | 
						
							| 49 | 48 | a1i |  |-  ( n e. NN0 -> 4 e. CC ) | 
						
							| 50 | 46 47 49 | adddird |  |-  ( n e. NN0 -> ( ( ( 4 ^ n ) + 2 ) x. 4 ) = ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( n e. NN0 -> ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 2 x. 3 ) ) = ( ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) - ( 2 x. 3 ) ) ) | 
						
							| 52 |  | 3cn |  |-  3 e. CC | 
						
							| 53 |  | 2cn |  |-  2 e. CC | 
						
							| 54 | 52 53 | mulcomi |  |-  ( 3 x. 2 ) = ( 2 x. 3 ) | 
						
							| 55 | 54 | a1i |  |-  ( n e. NN0 -> ( 3 x. 2 ) = ( 2 x. 3 ) ) | 
						
							| 56 | 55 | oveq2d |  |-  ( n e. NN0 -> ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) = ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 2 x. 3 ) ) ) | 
						
							| 57 | 49 35 | expp1d |  |-  ( n e. NN0 -> ( 4 ^ ( n + 1 ) ) = ( ( 4 ^ n ) x. 4 ) ) | 
						
							| 58 |  | ax-1cn |  |-  1 e. CC | 
						
							| 59 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 60 | 52 58 59 | addcomli |  |-  ( 1 + 3 ) = 4 | 
						
							| 61 | 60 | eqcomi |  |-  4 = ( 1 + 3 ) | 
						
							| 62 | 58 52 61 | mvrraddi |  |-  ( 4 - 3 ) = 1 | 
						
							| 63 | 62 | oveq2i |  |-  ( 2 x. ( 4 - 3 ) ) = ( 2 x. 1 ) | 
						
							| 64 | 53 48 52 | subdii |  |-  ( 2 x. ( 4 - 3 ) ) = ( ( 2 x. 4 ) - ( 2 x. 3 ) ) | 
						
							| 65 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 66 | 63 64 65 | 3eqtr3ri |  |-  2 = ( ( 2 x. 4 ) - ( 2 x. 3 ) ) | 
						
							| 67 | 66 | a1i |  |-  ( n e. NN0 -> 2 = ( ( 2 x. 4 ) - ( 2 x. 3 ) ) ) | 
						
							| 68 | 57 67 | oveq12d |  |-  ( n e. NN0 -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( 4 ^ n ) x. 4 ) + ( ( 2 x. 4 ) - ( 2 x. 3 ) ) ) ) | 
						
							| 69 | 46 49 | mulcld |  |-  ( n e. NN0 -> ( ( 4 ^ n ) x. 4 ) e. CC ) | 
						
							| 70 | 47 49 | mulcld |  |-  ( n e. NN0 -> ( 2 x. 4 ) e. CC ) | 
						
							| 71 | 52 | a1i |  |-  ( n e. NN0 -> 3 e. CC ) | 
						
							| 72 | 47 71 | mulcld |  |-  ( n e. NN0 -> ( 2 x. 3 ) e. CC ) | 
						
							| 73 | 69 70 72 | addsubassd |  |-  ( n e. NN0 -> ( ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) - ( 2 x. 3 ) ) = ( ( ( 4 ^ n ) x. 4 ) + ( ( 2 x. 4 ) - ( 2 x. 3 ) ) ) ) | 
						
							| 74 | 68 73 | eqtr4d |  |-  ( n e. NN0 -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) - ( 2 x. 3 ) ) ) | 
						
							| 75 | 51 56 74 | 3eqtr4rd |  |-  ( n e. NN0 -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) ) | 
						
							| 77 | 45 76 | breqtrrd |  |-  ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( 4 ^ ( n + 1 ) ) + 2 ) ) | 
						
							| 78 | 77 | ex |  |-  ( n e. NN0 -> ( 3 || ( ( 4 ^ n ) + 2 ) -> 3 || ( ( 4 ^ ( n + 1 ) ) + 2 ) ) ) | 
						
							| 79 | 3 6 9 12 21 78 | nn0ind |  |-  ( N e. NN0 -> 3 || ( ( 4 ^ N ) + 2 ) ) |