| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ex-fpar.h |
|- H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 2 |
|
ex-fpar.a |
|- A = ( 0 [,) +oo ) |
| 3 |
|
ex-fpar.b |
|- B = RR |
| 4 |
|
ex-fpar.f |
|- F = ( sqrt |` A ) |
| 5 |
|
ex-fpar.g |
|- G = ( sin |` B ) |
| 6 |
|
df-ov |
|- ( X ( + o. H ) Y ) = ( ( + o. H ) ` <. X , Y >. ) |
| 7 |
|
sqrtf |
|- sqrt : CC --> CC |
| 8 |
|
ffn |
|- ( sqrt : CC --> CC -> sqrt Fn CC ) |
| 9 |
7 8
|
ax-mp |
|- sqrt Fn CC |
| 10 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 11 |
|
ax-resscn |
|- RR C_ CC |
| 12 |
10 11
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
| 13 |
|
fnssres |
|- ( ( sqrt Fn CC /\ ( 0 [,) +oo ) C_ CC ) -> ( sqrt |` ( 0 [,) +oo ) ) Fn ( 0 [,) +oo ) ) |
| 14 |
2
|
reseq2i |
|- ( sqrt |` A ) = ( sqrt |` ( 0 [,) +oo ) ) |
| 15 |
14
|
fneq1i |
|- ( ( sqrt |` A ) Fn ( 0 [,) +oo ) <-> ( sqrt |` ( 0 [,) +oo ) ) Fn ( 0 [,) +oo ) ) |
| 16 |
13 15
|
sylibr |
|- ( ( sqrt Fn CC /\ ( 0 [,) +oo ) C_ CC ) -> ( sqrt |` A ) Fn ( 0 [,) +oo ) ) |
| 17 |
9 12 16
|
mp2an |
|- ( sqrt |` A ) Fn ( 0 [,) +oo ) |
| 18 |
|
id |
|- ( F = ( sqrt |` A ) -> F = ( sqrt |` A ) ) |
| 19 |
2
|
a1i |
|- ( F = ( sqrt |` A ) -> A = ( 0 [,) +oo ) ) |
| 20 |
18 19
|
fneq12d |
|- ( F = ( sqrt |` A ) -> ( F Fn A <-> ( sqrt |` A ) Fn ( 0 [,) +oo ) ) ) |
| 21 |
4 20
|
ax-mp |
|- ( F Fn A <-> ( sqrt |` A ) Fn ( 0 [,) +oo ) ) |
| 22 |
17 21
|
mpbir |
|- F Fn A |
| 23 |
|
sinf |
|- sin : CC --> CC |
| 24 |
|
ffn |
|- ( sin : CC --> CC -> sin Fn CC ) |
| 25 |
23 24
|
ax-mp |
|- sin Fn CC |
| 26 |
|
fnssres |
|- ( ( sin Fn CC /\ RR C_ CC ) -> ( sin |` RR ) Fn RR ) |
| 27 |
3
|
reseq2i |
|- ( sin |` B ) = ( sin |` RR ) |
| 28 |
27
|
fneq1i |
|- ( ( sin |` B ) Fn RR <-> ( sin |` RR ) Fn RR ) |
| 29 |
26 28
|
sylibr |
|- ( ( sin Fn CC /\ RR C_ CC ) -> ( sin |` B ) Fn RR ) |
| 30 |
25 11 29
|
mp2an |
|- ( sin |` B ) Fn RR |
| 31 |
|
id |
|- ( G = ( sin |` B ) -> G = ( sin |` B ) ) |
| 32 |
3
|
a1i |
|- ( G = ( sin |` B ) -> B = RR ) |
| 33 |
31 32
|
fneq12d |
|- ( G = ( sin |` B ) -> ( G Fn B <-> ( sin |` B ) Fn RR ) ) |
| 34 |
5 33
|
ax-mp |
|- ( G Fn B <-> ( sin |` B ) Fn RR ) |
| 35 |
30 34
|
mpbir |
|- G Fn B |
| 36 |
1
|
fpar |
|- ( ( F Fn A /\ G Fn B ) -> H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) ) |
| 37 |
22 35 36
|
mp2an |
|- H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) |
| 38 |
|
opex |
|- <. ( F ` x ) , ( G ` y ) >. e. _V |
| 39 |
37 38
|
fnmpoi |
|- H Fn ( A X. B ) |
| 40 |
|
opelxpi |
|- ( ( X e. A /\ Y e. B ) -> <. X , Y >. e. ( A X. B ) ) |
| 41 |
|
fvco2 |
|- ( ( H Fn ( A X. B ) /\ <. X , Y >. e. ( A X. B ) ) -> ( ( + o. H ) ` <. X , Y >. ) = ( + ` ( H ` <. X , Y >. ) ) ) |
| 42 |
39 40 41
|
sylancr |
|- ( ( X e. A /\ Y e. B ) -> ( ( + o. H ) ` <. X , Y >. ) = ( + ` ( H ` <. X , Y >. ) ) ) |
| 43 |
|
simpl |
|- ( ( X e. A /\ Y e. B ) -> X e. A ) |
| 44 |
|
simpr |
|- ( ( X e. A /\ Y e. B ) -> Y e. B ) |
| 45 |
37 43 44
|
fvproj |
|- ( ( X e. A /\ Y e. B ) -> ( H ` <. X , Y >. ) = <. ( F ` X ) , ( G ` Y ) >. ) |
| 46 |
45
|
fveq2d |
|- ( ( X e. A /\ Y e. B ) -> ( + ` ( H ` <. X , Y >. ) ) = ( + ` <. ( F ` X ) , ( G ` Y ) >. ) ) |
| 47 |
|
df-ov |
|- ( ( F ` X ) + ( G ` Y ) ) = ( + ` <. ( F ` X ) , ( G ` Y ) >. ) |
| 48 |
4
|
fveq1i |
|- ( F ` X ) = ( ( sqrt |` A ) ` X ) |
| 49 |
|
fvres |
|- ( X e. A -> ( ( sqrt |` A ) ` X ) = ( sqrt ` X ) ) |
| 50 |
48 49
|
eqtrid |
|- ( X e. A -> ( F ` X ) = ( sqrt ` X ) ) |
| 51 |
5
|
fveq1i |
|- ( G ` Y ) = ( ( sin |` B ) ` Y ) |
| 52 |
|
fvres |
|- ( Y e. B -> ( ( sin |` B ) ` Y ) = ( sin ` Y ) ) |
| 53 |
51 52
|
eqtrid |
|- ( Y e. B -> ( G ` Y ) = ( sin ` Y ) ) |
| 54 |
50 53
|
oveqan12d |
|- ( ( X e. A /\ Y e. B ) -> ( ( F ` X ) + ( G ` Y ) ) = ( ( sqrt ` X ) + ( sin ` Y ) ) ) |
| 55 |
47 54
|
eqtr3id |
|- ( ( X e. A /\ Y e. B ) -> ( + ` <. ( F ` X ) , ( G ` Y ) >. ) = ( ( sqrt ` X ) + ( sin ` Y ) ) ) |
| 56 |
42 46 55
|
3eqtrd |
|- ( ( X e. A /\ Y e. B ) -> ( ( + o. H ) ` <. X , Y >. ) = ( ( sqrt ` X ) + ( sin ` Y ) ) ) |
| 57 |
6 56
|
eqtrid |
|- ( ( X e. A /\ Y e. B ) -> ( X ( + o. H ) Y ) = ( ( sqrt ` X ) + ( sin ` Y ) ) ) |