| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 2 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 4 |
3
|
sseq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ↔ ( 𝑓 ‘ 𝑚 ) ⊆ ℝ ) ) |
| 5 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) = ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ ℝ ) ) |
| 7 |
4 6
|
anbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ↔ ( ( 𝑓 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ ℝ ) ) ) |
| 8 |
7
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ ℝ ) ) |
| 9 |
8
|
simpld |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑓 ‘ 𝑚 ) ⊆ ℝ ) |
| 10 |
9
|
adantll |
⊢ ( ( ( 𝑓 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑓 ‘ 𝑚 ) ⊆ ℝ ) |
| 11 |
8
|
simprd |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ ℝ ) |
| 12 |
11
|
adantll |
⊢ ( ( ( 𝑓 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ ℝ ) |
| 13 |
1 2 10 12
|
ovoliun |
⊢ ( ( 𝑓 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑓 ‘ 𝑚 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 14 |
13
|
ovoliunnfl |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ∪ 𝐴 ≠ ℝ ) |