Metamath Proof Explorer


Theorem ex-ovoliunnfl

Description: Demonstration of ovoliunnfl . (Contributed by Brendan Leahy, 21-Nov-2017)

Ref Expression
Assertion ex-ovoliunnfl ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → 𝐴 ≠ ℝ )

Proof

Step Hyp Ref Expression
1 eqid seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑚 ) ) ) ) = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑚 ) ) ) )
2 eqid ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑚 ) ) )
3 fveq2 ( 𝑛 = 𝑚 → ( 𝑓𝑛 ) = ( 𝑓𝑚 ) )
4 3 sseq1d ( 𝑛 = 𝑚 → ( ( 𝑓𝑛 ) ⊆ ℝ ↔ ( 𝑓𝑚 ) ⊆ ℝ ) )
5 2fveq3 ( 𝑛 = 𝑚 → ( vol* ‘ ( 𝑓𝑛 ) ) = ( vol* ‘ ( 𝑓𝑚 ) ) )
6 5 eleq1d ( 𝑛 = 𝑚 → ( ( vol* ‘ ( 𝑓𝑛 ) ) ∈ ℝ ↔ ( vol* ‘ ( 𝑓𝑚 ) ) ∈ ℝ ) )
7 4 6 anbi12d ( 𝑛 = 𝑚 → ( ( ( 𝑓𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ↔ ( ( 𝑓𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑚 ) ) ∈ ℝ ) ) )
8 7 rspccva ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑓𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑚 ) ) ∈ ℝ ) )
9 8 simpld ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑓𝑚 ) ⊆ ℝ )
10 9 adantll ( ( ( 𝑓 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑓𝑚 ) ⊆ ℝ )
11 8 simprd ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑓𝑚 ) ) ∈ ℝ )
12 11 adantll ( ( ( 𝑓 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑓𝑚 ) ) ∈ ℝ )
13 1 2 10 12 ovoliun ( ( 𝑓 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ) → ( vol* ‘ 𝑚 ∈ ℕ ( 𝑓𝑚 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑚 ) ) ) ) , ℝ* , < ) )
14 13 ovoliunnfl ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → 𝐴 ≠ ℝ )