| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovoliunnfl.0 |
⊢ ( ( 𝑓 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑓 ‘ 𝑚 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 2 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
| 3 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 4 |
2 3
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝐴 = ∅ → ( vol* ‘ ∪ 𝐴 ) = ( vol* ‘ ∅ ) ) |
| 6 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
| 7 |
5 6
|
eqtr2di |
⊢ ( 𝐴 = ∅ → 0 = ( vol* ‘ ∪ 𝐴 ) ) |
| 8 |
7
|
a1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol* ‘ ∪ 𝐴 ) ) ) |
| 9 |
|
ovolge0 |
⊢ ( ∪ 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ 𝐴 ) ) |
| 10 |
9
|
ad2antll |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 ≤ ( vol* ‘ ∪ 𝐴 ) ) |
| 11 |
|
reldom |
⊢ Rel ≼ |
| 12 |
11
|
brrelex1i |
⊢ ( 𝐴 ≼ ℕ → 𝐴 ∈ V ) |
| 13 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝐴 ≼ ℕ → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 15 |
14
|
biimparc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∅ ≺ 𝐴 ) |
| 16 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝐴 ∧ 𝐴 ≼ ℕ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) |
| 17 |
15 16
|
sylancom |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) |
| 18 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ ℝ ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ) |
| 19 |
18
|
anbi1i |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ) |
| 20 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ) |
| 21 |
19 20
|
bitr4i |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ) |
| 22 |
|
brdom2 |
⊢ ( 𝑥 ≼ ℕ ↔ ( 𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ ) ) |
| 23 |
|
nnenom |
⊢ ℕ ≈ ω |
| 24 |
|
sdomen2 |
⊢ ( ℕ ≈ ω → ( 𝑥 ≺ ℕ ↔ 𝑥 ≺ ω ) ) |
| 25 |
23 24
|
ax-mp |
⊢ ( 𝑥 ≺ ℕ ↔ 𝑥 ≺ ω ) |
| 26 |
|
isfinite |
⊢ ( 𝑥 ∈ Fin ↔ 𝑥 ≺ ω ) |
| 27 |
25 26
|
bitr4i |
⊢ ( 𝑥 ≺ ℕ ↔ 𝑥 ∈ Fin ) |
| 28 |
27
|
orbi1i |
⊢ ( ( 𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ ) ↔ ( 𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ ) ) |
| 29 |
22 28
|
bitri |
⊢ ( 𝑥 ≼ ℕ ↔ ( 𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ ) ) |
| 30 |
|
ovolfi |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝑥 ⊆ ℝ ) → ( vol* ‘ 𝑥 ) = 0 ) |
| 31 |
30
|
expcom |
⊢ ( 𝑥 ⊆ ℝ → ( 𝑥 ∈ Fin → ( vol* ‘ 𝑥 ) = 0 ) ) |
| 32 |
|
ovolctb |
⊢ ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≈ ℕ ) → ( vol* ‘ 𝑥 ) = 0 ) |
| 33 |
32
|
ex |
⊢ ( 𝑥 ⊆ ℝ → ( 𝑥 ≈ ℕ → ( vol* ‘ 𝑥 ) = 0 ) ) |
| 34 |
31 33
|
jaod |
⊢ ( 𝑥 ⊆ ℝ → ( ( 𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ ) → ( vol* ‘ 𝑥 ) = 0 ) ) |
| 35 |
29 34
|
biimtrid |
⊢ ( 𝑥 ⊆ ℝ → ( 𝑥 ≼ ℕ → ( vol* ‘ 𝑥 ) = 0 ) ) |
| 36 |
35
|
imdistani |
⊢ ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
| 37 |
36
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
| 38 |
21 37
|
sylbi |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
| 39 |
38
|
ancoms |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
| 40 |
|
foima |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( 𝑓 “ ℕ ) = 𝐴 ) |
| 41 |
40
|
raleqdv |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ ( 𝑓 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) ) |
| 42 |
|
fofn |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → 𝑓 Fn ℕ ) |
| 43 |
|
ssid |
⊢ ℕ ⊆ ℕ |
| 44 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑙 ) → ( 𝑥 ⊆ ℝ ↔ ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ) ) |
| 45 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑙 ) → ( ( vol* ‘ 𝑥 ) = 0 ↔ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ) |
| 46 |
44 45
|
anbi12d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑙 ) → ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ) ) |
| 47 |
46
|
ralima |
⊢ ( ( 𝑓 Fn ℕ ∧ ℕ ⊆ ℕ ) → ( ∀ 𝑥 ∈ ( 𝑓 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ) ) |
| 48 |
42 43 47
|
sylancl |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ ( 𝑓 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ) ) |
| 49 |
41 48
|
bitr3d |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑙 = 𝑛 → ( 𝑓 ‘ 𝑙 ) = ( 𝑓 ‘ 𝑛 ) ) |
| 51 |
50
|
sseq1d |
⊢ ( 𝑙 = 𝑛 → ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ↔ ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ) ) |
| 52 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑛 → ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 53 |
52
|
eqeq1d |
⊢ ( 𝑙 = 𝑛 → ( ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ↔ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) ) |
| 54 |
51 53
|
anbi12d |
⊢ ( 𝑙 = 𝑛 → ( ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ↔ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) ) ) |
| 55 |
54
|
cbvralvw |
⊢ ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) ) |
| 56 |
|
0re |
⊢ 0 ∈ ℝ |
| 57 |
|
eleq1a |
⊢ ( 0 ∈ ℝ → ( ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 → ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ) |
| 58 |
56 57
|
ax-mp |
⊢ ( ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 → ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) |
| 59 |
58
|
anim2i |
⊢ ( ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) → ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ) |
| 60 |
59
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) → ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ) |
| 61 |
55 60
|
sylbi |
⊢ ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) → ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ) |
| 62 |
42 61 1
|
syl2an |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑓 ‘ 𝑚 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 63 |
|
fofun |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → Fun 𝑓 ) |
| 64 |
|
funiunfv |
⊢ ( Fun 𝑓 → ∪ 𝑚 ∈ ℕ ( 𝑓 ‘ 𝑚 ) = ∪ ( 𝑓 “ ℕ ) ) |
| 65 |
63 64
|
syl |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ∪ 𝑚 ∈ ℕ ( 𝑓 ‘ 𝑚 ) = ∪ ( 𝑓 “ ℕ ) ) |
| 66 |
40
|
unieqd |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ∪ ( 𝑓 “ ℕ ) = ∪ 𝐴 ) |
| 67 |
65 66
|
eqtrd |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ∪ 𝑚 ∈ ℕ ( 𝑓 ‘ 𝑚 ) = ∪ 𝐴 ) |
| 68 |
67
|
fveq2d |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑓 ‘ 𝑚 ) ) = ( vol* ‘ ∪ 𝐴 ) ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑓 ‘ 𝑚 ) ) = ( vol* ‘ ∪ 𝐴 ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑙 = 𝑚 → ( 𝑓 ‘ 𝑙 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 71 |
70
|
sseq1d |
⊢ ( 𝑙 = 𝑚 → ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ↔ ( 𝑓 ‘ 𝑚 ) ⊆ ℝ ) ) |
| 72 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑚 → ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 73 |
72
|
eqeq1d |
⊢ ( 𝑙 = 𝑚 → ( ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ↔ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) = 0 ) ) |
| 74 |
71 73
|
anbi12d |
⊢ ( 𝑙 = 𝑚 → ( ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ↔ ( ( 𝑓 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) = 0 ) ) ) |
| 75 |
74
|
rspccva |
⊢ ( ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) = 0 ) ) |
| 76 |
75
|
simprd |
⊢ ( ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) = 0 ) |
| 77 |
76
|
mpteq2dva |
⊢ ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) → ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ 0 ) ) |
| 78 |
77
|
seqeq3d |
⊢ ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) ) |
| 79 |
78
|
rneqd |
⊢ ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) → ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) = ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) ) |
| 80 |
79
|
supeq1d |
⊢ ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) → sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) ) |
| 81 |
|
0cn |
⊢ 0 ∈ ℂ |
| 82 |
|
ser1const |
⊢ ( ( 0 ∈ ℂ ∧ 𝑙 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑙 ) = ( 𝑙 · 0 ) ) |
| 83 |
81 82
|
mpan |
⊢ ( 𝑙 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑙 ) = ( 𝑙 · 0 ) ) |
| 84 |
|
nncn |
⊢ ( 𝑙 ∈ ℕ → 𝑙 ∈ ℂ ) |
| 85 |
84
|
mul01d |
⊢ ( 𝑙 ∈ ℕ → ( 𝑙 · 0 ) = 0 ) |
| 86 |
83 85
|
eqtrd |
⊢ ( 𝑙 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑙 ) = 0 ) |
| 87 |
86
|
mpteq2ia |
⊢ ( 𝑙 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑙 ) ) = ( 𝑙 ∈ ℕ ↦ 0 ) |
| 88 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 ) |
| 89 |
|
seqeq3 |
⊢ ( ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 ) → seq 1 ( + , ( ℕ × { 0 } ) ) = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) ) |
| 90 |
88 89
|
ax-mp |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) |
| 91 |
|
1z |
⊢ 1 ∈ ℤ |
| 92 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 93 |
91 92
|
ax-mp |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) |
| 94 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 95 |
94
|
fneq2i |
⊢ ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ℕ ↔ seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 96 |
|
dffn5 |
⊢ ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ℕ ↔ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑙 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑙 ) ) ) |
| 97 |
95 96
|
bitr3i |
⊢ ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) ↔ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑙 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑙 ) ) ) |
| 98 |
93 97
|
mpbi |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑙 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑙 ) ) |
| 99 |
90 98
|
eqtr3i |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) = ( 𝑙 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑙 ) ) |
| 100 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑙 ∈ ℕ ↦ 0 ) |
| 101 |
87 99 100
|
3eqtr4i |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) = ( ℕ × { 0 } ) |
| 102 |
101
|
rneqi |
⊢ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) = ran ( ℕ × { 0 } ) |
| 103 |
|
1nn |
⊢ 1 ∈ ℕ |
| 104 |
|
ne0i |
⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) |
| 105 |
|
rnxp |
⊢ ( ℕ ≠ ∅ → ran ( ℕ × { 0 } ) = { 0 } ) |
| 106 |
103 104 105
|
mp2b |
⊢ ran ( ℕ × { 0 } ) = { 0 } |
| 107 |
102 106
|
eqtri |
⊢ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) = { 0 } |
| 108 |
107
|
supeq1i |
⊢ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) |
| 109 |
|
xrltso |
⊢ < Or ℝ* |
| 110 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 111 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
| 112 |
109 110 111
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
| 113 |
108 112
|
eqtri |
⊢ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) = 0 |
| 114 |
80 113
|
eqtrdi |
⊢ ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) → sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) , ℝ* , < ) = 0 ) |
| 115 |
114
|
adantl |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ) → sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) , ℝ* , < ) = 0 ) |
| 116 |
62 69 115
|
3brtr3d |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) ) → ( vol* ‘ ∪ 𝐴 ) ≤ 0 ) |
| 117 |
116
|
ex |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( ∀ 𝑙 ∈ ℕ ( ( 𝑓 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑓 ‘ 𝑙 ) ) = 0 ) → ( vol* ‘ ∪ 𝐴 ) ≤ 0 ) ) |
| 118 |
49 117
|
sylbid |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → ( vol* ‘ ∪ 𝐴 ) ≤ 0 ) ) |
| 119 |
118
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → ( vol* ‘ ∪ 𝐴 ) ≤ 0 ) ) |
| 120 |
119
|
imp |
⊢ ( ( ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) → ( vol* ‘ ∪ 𝐴 ) ≤ 0 ) |
| 121 |
17 39 120
|
syl2an |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → ( vol* ‘ ∪ 𝐴 ) ≤ 0 ) |
| 122 |
|
ovolcl |
⊢ ( ∪ 𝐴 ⊆ ℝ → ( vol* ‘ ∪ 𝐴 ) ∈ ℝ* ) |
| 123 |
|
xrletri3 |
⊢ ( ( 0 ∈ ℝ* ∧ ( vol* ‘ ∪ 𝐴 ) ∈ ℝ* ) → ( 0 = ( vol* ‘ ∪ 𝐴 ) ↔ ( 0 ≤ ( vol* ‘ ∪ 𝐴 ) ∧ ( vol* ‘ ∪ 𝐴 ) ≤ 0 ) ) ) |
| 124 |
110 122 123
|
sylancr |
⊢ ( ∪ 𝐴 ⊆ ℝ → ( 0 = ( vol* ‘ ∪ 𝐴 ) ↔ ( 0 ≤ ( vol* ‘ ∪ 𝐴 ) ∧ ( vol* ‘ ∪ 𝐴 ) ≤ 0 ) ) ) |
| 125 |
124
|
ad2antll |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → ( 0 = ( vol* ‘ ∪ 𝐴 ) ↔ ( 0 ≤ ( vol* ‘ ∪ 𝐴 ) ∧ ( vol* ‘ ∪ 𝐴 ) ≤ 0 ) ) ) |
| 126 |
10 121 125
|
mpbir2and |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol* ‘ ∪ 𝐴 ) ) |
| 127 |
126
|
expl |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol* ‘ ∪ 𝐴 ) ) ) |
| 128 |
8 127
|
pm2.61ine |
⊢ ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol* ‘ ∪ 𝐴 ) ) |
| 129 |
|
renepnf |
⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) |
| 130 |
56 129
|
mp1i |
⊢ ( ∪ 𝐴 = ℝ → 0 ≠ +∞ ) |
| 131 |
|
fveq2 |
⊢ ( ∪ 𝐴 = ℝ → ( vol* ‘ ∪ 𝐴 ) = ( vol* ‘ ℝ ) ) |
| 132 |
|
ovolre |
⊢ ( vol* ‘ ℝ ) = +∞ |
| 133 |
131 132
|
eqtrdi |
⊢ ( ∪ 𝐴 = ℝ → ( vol* ‘ ∪ 𝐴 ) = +∞ ) |
| 134 |
130 133
|
neeqtrrd |
⊢ ( ∪ 𝐴 = ℝ → 0 ≠ ( vol* ‘ ∪ 𝐴 ) ) |
| 135 |
134
|
necon2i |
⊢ ( 0 = ( vol* ‘ ∪ 𝐴 ) → ∪ 𝐴 ≠ ℝ ) |
| 136 |
128 135
|
syl |
⊢ ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → ∪ 𝐴 ≠ ℝ ) |
| 137 |
136
|
expr |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ( ∪ 𝐴 ⊆ ℝ → ∪ 𝐴 ≠ ℝ ) ) |
| 138 |
|
eqimss |
⊢ ( ∪ 𝐴 = ℝ → ∪ 𝐴 ⊆ ℝ ) |
| 139 |
138
|
necon3bi |
⊢ ( ¬ ∪ 𝐴 ⊆ ℝ → ∪ 𝐴 ≠ ℝ ) |
| 140 |
137 139
|
pm2.61d1 |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ∪ 𝐴 ≠ ℝ ) |