Step |
Hyp |
Ref |
Expression |
1 |
|
ovoliunnfl.0 |
|
2 |
|
unieq |
|
3 |
|
uni0 |
|
4 |
2 3
|
eqtrdi |
|
5 |
4
|
fveq2d |
|
6 |
|
ovol0 |
|
7 |
5 6
|
eqtr2di |
|
8 |
7
|
a1d |
|
9 |
|
ovolge0 |
|
10 |
9
|
ad2antll |
|
11 |
|
reldom |
|
12 |
11
|
brrelex1i |
|
13 |
|
0sdomg |
|
14 |
12 13
|
syl |
|
15 |
14
|
biimparc |
|
16 |
|
fodomr |
|
17 |
15 16
|
sylancom |
|
18 |
|
unissb |
|
19 |
18
|
anbi1i |
|
20 |
|
r19.26 |
|
21 |
19 20
|
bitr4i |
|
22 |
|
brdom2 |
|
23 |
|
nnenom |
|
24 |
|
sdomen2 |
|
25 |
23 24
|
ax-mp |
|
26 |
|
isfinite |
|
27 |
25 26
|
bitr4i |
|
28 |
27
|
orbi1i |
|
29 |
22 28
|
bitri |
|
30 |
|
ovolfi |
|
31 |
30
|
expcom |
|
32 |
|
ovolctb |
|
33 |
32
|
ex |
|
34 |
31 33
|
jaod |
|
35 |
29 34
|
syl5bi |
|
36 |
35
|
imdistani |
|
37 |
36
|
ralimi |
|
38 |
21 37
|
sylbi |
|
39 |
38
|
ancoms |
|
40 |
|
foima |
|
41 |
40
|
raleqdv |
|
42 |
|
fofn |
|
43 |
|
ssid |
|
44 |
|
sseq1 |
|
45 |
|
fveqeq2 |
|
46 |
44 45
|
anbi12d |
|
47 |
46
|
ralima |
|
48 |
42 43 47
|
sylancl |
|
49 |
41 48
|
bitr3d |
|
50 |
|
fveq2 |
|
51 |
50
|
sseq1d |
|
52 |
|
2fveq3 |
|
53 |
52
|
eqeq1d |
|
54 |
51 53
|
anbi12d |
|
55 |
54
|
cbvralvw |
|
56 |
|
0re |
|
57 |
|
eleq1a |
|
58 |
56 57
|
ax-mp |
|
59 |
58
|
anim2i |
|
60 |
59
|
ralimi |
|
61 |
55 60
|
sylbi |
|
62 |
42 61 1
|
syl2an |
|
63 |
|
fofun |
|
64 |
|
funiunfv |
|
65 |
63 64
|
syl |
|
66 |
40
|
unieqd |
|
67 |
65 66
|
eqtrd |
|
68 |
67
|
fveq2d |
|
69 |
68
|
adantr |
|
70 |
|
fveq2 |
|
71 |
70
|
sseq1d |
|
72 |
|
2fveq3 |
|
73 |
72
|
eqeq1d |
|
74 |
71 73
|
anbi12d |
|
75 |
74
|
rspccva |
|
76 |
75
|
simprd |
|
77 |
76
|
mpteq2dva |
|
78 |
77
|
seqeq3d |
|
79 |
78
|
rneqd |
|
80 |
79
|
supeq1d |
|
81 |
|
0cn |
|
82 |
|
ser1const |
|
83 |
81 82
|
mpan |
|
84 |
|
nncn |
|
85 |
84
|
mul01d |
|
86 |
83 85
|
eqtrd |
|
87 |
86
|
mpteq2ia |
|
88 |
|
fconstmpt |
|
89 |
|
seqeq3 |
|
90 |
88 89
|
ax-mp |
|
91 |
|
1z |
|
92 |
|
seqfn |
|
93 |
91 92
|
ax-mp |
|
94 |
|
nnuz |
|
95 |
94
|
fneq2i |
|
96 |
|
dffn5 |
|
97 |
95 96
|
bitr3i |
|
98 |
93 97
|
mpbi |
|
99 |
90 98
|
eqtr3i |
|
100 |
|
fconstmpt |
|
101 |
87 99 100
|
3eqtr4i |
|
102 |
101
|
rneqi |
|
103 |
|
1nn |
|
104 |
|
ne0i |
|
105 |
|
rnxp |
|
106 |
103 104 105
|
mp2b |
|
107 |
102 106
|
eqtri |
|
108 |
107
|
supeq1i |
|
109 |
|
xrltso |
|
110 |
|
0xr |
|
111 |
|
supsn |
|
112 |
109 110 111
|
mp2an |
|
113 |
108 112
|
eqtri |
|
114 |
80 113
|
eqtrdi |
|
115 |
114
|
adantl |
|
116 |
62 69 115
|
3brtr3d |
|
117 |
116
|
ex |
|
118 |
49 117
|
sylbid |
|
119 |
118
|
exlimiv |
|
120 |
119
|
imp |
|
121 |
17 39 120
|
syl2an |
|
122 |
|
ovolcl |
|
123 |
|
xrletri3 |
|
124 |
110 122 123
|
sylancr |
|
125 |
124
|
ad2antll |
|
126 |
10 121 125
|
mpbir2and |
|
127 |
126
|
expl |
|
128 |
8 127
|
pm2.61ine |
|
129 |
|
renepnf |
|
130 |
56 129
|
mp1i |
|
131 |
|
fveq2 |
|
132 |
|
ovolre |
|
133 |
131 132
|
eqtrdi |
|
134 |
130 133
|
neeqtrrd |
|
135 |
134
|
necon2i |
|
136 |
128 135
|
syl |
|
137 |
136
|
expr |
|
138 |
|
eqimss |
|
139 |
138
|
necon3bi |
|
140 |
137 139
|
pm2.61d1 |
|