| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovoliunnfl.0 |
|- ( ( f Fn NN /\ A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) ) -> ( vol* ` U_ m e. NN ( f ` m ) ) <_ sup ( ran seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) , RR* , < ) ) |
| 2 |
|
unieq |
|- ( A = (/) -> U. A = U. (/) ) |
| 3 |
|
uni0 |
|- U. (/) = (/) |
| 4 |
2 3
|
eqtrdi |
|- ( A = (/) -> U. A = (/) ) |
| 5 |
4
|
fveq2d |
|- ( A = (/) -> ( vol* ` U. A ) = ( vol* ` (/) ) ) |
| 6 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
| 7 |
5 6
|
eqtr2di |
|- ( A = (/) -> 0 = ( vol* ` U. A ) ) |
| 8 |
7
|
a1d |
|- ( A = (/) -> ( ( A ~<_ NN /\ ( A. x e. A x ~<_ NN /\ U. A C_ RR ) ) -> 0 = ( vol* ` U. A ) ) ) |
| 9 |
|
ovolge0 |
|- ( U. A C_ RR -> 0 <_ ( vol* ` U. A ) ) |
| 10 |
9
|
ad2antll |
|- ( ( ( A =/= (/) /\ A ~<_ NN ) /\ ( A. x e. A x ~<_ NN /\ U. A C_ RR ) ) -> 0 <_ ( vol* ` U. A ) ) |
| 11 |
|
reldom |
|- Rel ~<_ |
| 12 |
11
|
brrelex1i |
|- ( A ~<_ NN -> A e. _V ) |
| 13 |
|
0sdomg |
|- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
| 14 |
12 13
|
syl |
|- ( A ~<_ NN -> ( (/) ~< A <-> A =/= (/) ) ) |
| 15 |
14
|
biimparc |
|- ( ( A =/= (/) /\ A ~<_ NN ) -> (/) ~< A ) |
| 16 |
|
fodomr |
|- ( ( (/) ~< A /\ A ~<_ NN ) -> E. f f : NN -onto-> A ) |
| 17 |
15 16
|
sylancom |
|- ( ( A =/= (/) /\ A ~<_ NN ) -> E. f f : NN -onto-> A ) |
| 18 |
|
unissb |
|- ( U. A C_ RR <-> A. x e. A x C_ RR ) |
| 19 |
18
|
anbi1i |
|- ( ( U. A C_ RR /\ A. x e. A x ~<_ NN ) <-> ( A. x e. A x C_ RR /\ A. x e. A x ~<_ NN ) ) |
| 20 |
|
r19.26 |
|- ( A. x e. A ( x C_ RR /\ x ~<_ NN ) <-> ( A. x e. A x C_ RR /\ A. x e. A x ~<_ NN ) ) |
| 21 |
19 20
|
bitr4i |
|- ( ( U. A C_ RR /\ A. x e. A x ~<_ NN ) <-> A. x e. A ( x C_ RR /\ x ~<_ NN ) ) |
| 22 |
|
brdom2 |
|- ( x ~<_ NN <-> ( x ~< NN \/ x ~~ NN ) ) |
| 23 |
|
nnenom |
|- NN ~~ _om |
| 24 |
|
sdomen2 |
|- ( NN ~~ _om -> ( x ~< NN <-> x ~< _om ) ) |
| 25 |
23 24
|
ax-mp |
|- ( x ~< NN <-> x ~< _om ) |
| 26 |
|
isfinite |
|- ( x e. Fin <-> x ~< _om ) |
| 27 |
25 26
|
bitr4i |
|- ( x ~< NN <-> x e. Fin ) |
| 28 |
27
|
orbi1i |
|- ( ( x ~< NN \/ x ~~ NN ) <-> ( x e. Fin \/ x ~~ NN ) ) |
| 29 |
22 28
|
bitri |
|- ( x ~<_ NN <-> ( x e. Fin \/ x ~~ NN ) ) |
| 30 |
|
ovolfi |
|- ( ( x e. Fin /\ x C_ RR ) -> ( vol* ` x ) = 0 ) |
| 31 |
30
|
expcom |
|- ( x C_ RR -> ( x e. Fin -> ( vol* ` x ) = 0 ) ) |
| 32 |
|
ovolctb |
|- ( ( x C_ RR /\ x ~~ NN ) -> ( vol* ` x ) = 0 ) |
| 33 |
32
|
ex |
|- ( x C_ RR -> ( x ~~ NN -> ( vol* ` x ) = 0 ) ) |
| 34 |
31 33
|
jaod |
|- ( x C_ RR -> ( ( x e. Fin \/ x ~~ NN ) -> ( vol* ` x ) = 0 ) ) |
| 35 |
29 34
|
biimtrid |
|- ( x C_ RR -> ( x ~<_ NN -> ( vol* ` x ) = 0 ) ) |
| 36 |
35
|
imdistani |
|- ( ( x C_ RR /\ x ~<_ NN ) -> ( x C_ RR /\ ( vol* ` x ) = 0 ) ) |
| 37 |
36
|
ralimi |
|- ( A. x e. A ( x C_ RR /\ x ~<_ NN ) -> A. x e. A ( x C_ RR /\ ( vol* ` x ) = 0 ) ) |
| 38 |
21 37
|
sylbi |
|- ( ( U. A C_ RR /\ A. x e. A x ~<_ NN ) -> A. x e. A ( x C_ RR /\ ( vol* ` x ) = 0 ) ) |
| 39 |
38
|
ancoms |
|- ( ( A. x e. A x ~<_ NN /\ U. A C_ RR ) -> A. x e. A ( x C_ RR /\ ( vol* ` x ) = 0 ) ) |
| 40 |
|
foima |
|- ( f : NN -onto-> A -> ( f " NN ) = A ) |
| 41 |
40
|
raleqdv |
|- ( f : NN -onto-> A -> ( A. x e. ( f " NN ) ( x C_ RR /\ ( vol* ` x ) = 0 ) <-> A. x e. A ( x C_ RR /\ ( vol* ` x ) = 0 ) ) ) |
| 42 |
|
fofn |
|- ( f : NN -onto-> A -> f Fn NN ) |
| 43 |
|
ssid |
|- NN C_ NN |
| 44 |
|
sseq1 |
|- ( x = ( f ` l ) -> ( x C_ RR <-> ( f ` l ) C_ RR ) ) |
| 45 |
|
fveqeq2 |
|- ( x = ( f ` l ) -> ( ( vol* ` x ) = 0 <-> ( vol* ` ( f ` l ) ) = 0 ) ) |
| 46 |
44 45
|
anbi12d |
|- ( x = ( f ` l ) -> ( ( x C_ RR /\ ( vol* ` x ) = 0 ) <-> ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) ) ) |
| 47 |
46
|
ralima |
|- ( ( f Fn NN /\ NN C_ NN ) -> ( A. x e. ( f " NN ) ( x C_ RR /\ ( vol* ` x ) = 0 ) <-> A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) ) ) |
| 48 |
42 43 47
|
sylancl |
|- ( f : NN -onto-> A -> ( A. x e. ( f " NN ) ( x C_ RR /\ ( vol* ` x ) = 0 ) <-> A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) ) ) |
| 49 |
41 48
|
bitr3d |
|- ( f : NN -onto-> A -> ( A. x e. A ( x C_ RR /\ ( vol* ` x ) = 0 ) <-> A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) ) ) |
| 50 |
|
fveq2 |
|- ( l = n -> ( f ` l ) = ( f ` n ) ) |
| 51 |
50
|
sseq1d |
|- ( l = n -> ( ( f ` l ) C_ RR <-> ( f ` n ) C_ RR ) ) |
| 52 |
|
2fveq3 |
|- ( l = n -> ( vol* ` ( f ` l ) ) = ( vol* ` ( f ` n ) ) ) |
| 53 |
52
|
eqeq1d |
|- ( l = n -> ( ( vol* ` ( f ` l ) ) = 0 <-> ( vol* ` ( f ` n ) ) = 0 ) ) |
| 54 |
51 53
|
anbi12d |
|- ( l = n -> ( ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) <-> ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) = 0 ) ) ) |
| 55 |
54
|
cbvralvw |
|- ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) <-> A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) = 0 ) ) |
| 56 |
|
0re |
|- 0 e. RR |
| 57 |
|
eleq1a |
|- ( 0 e. RR -> ( ( vol* ` ( f ` n ) ) = 0 -> ( vol* ` ( f ` n ) ) e. RR ) ) |
| 58 |
56 57
|
ax-mp |
|- ( ( vol* ` ( f ` n ) ) = 0 -> ( vol* ` ( f ` n ) ) e. RR ) |
| 59 |
58
|
anim2i |
|- ( ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) = 0 ) -> ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) ) |
| 60 |
59
|
ralimi |
|- ( A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) = 0 ) -> A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) ) |
| 61 |
55 60
|
sylbi |
|- ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) -> A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) ) |
| 62 |
42 61 1
|
syl2an |
|- ( ( f : NN -onto-> A /\ A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) ) -> ( vol* ` U_ m e. NN ( f ` m ) ) <_ sup ( ran seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) , RR* , < ) ) |
| 63 |
|
fofun |
|- ( f : NN -onto-> A -> Fun f ) |
| 64 |
|
funiunfv |
|- ( Fun f -> U_ m e. NN ( f ` m ) = U. ( f " NN ) ) |
| 65 |
63 64
|
syl |
|- ( f : NN -onto-> A -> U_ m e. NN ( f ` m ) = U. ( f " NN ) ) |
| 66 |
40
|
unieqd |
|- ( f : NN -onto-> A -> U. ( f " NN ) = U. A ) |
| 67 |
65 66
|
eqtrd |
|- ( f : NN -onto-> A -> U_ m e. NN ( f ` m ) = U. A ) |
| 68 |
67
|
fveq2d |
|- ( f : NN -onto-> A -> ( vol* ` U_ m e. NN ( f ` m ) ) = ( vol* ` U. A ) ) |
| 69 |
68
|
adantr |
|- ( ( f : NN -onto-> A /\ A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) ) -> ( vol* ` U_ m e. NN ( f ` m ) ) = ( vol* ` U. A ) ) |
| 70 |
|
fveq2 |
|- ( l = m -> ( f ` l ) = ( f ` m ) ) |
| 71 |
70
|
sseq1d |
|- ( l = m -> ( ( f ` l ) C_ RR <-> ( f ` m ) C_ RR ) ) |
| 72 |
|
2fveq3 |
|- ( l = m -> ( vol* ` ( f ` l ) ) = ( vol* ` ( f ` m ) ) ) |
| 73 |
72
|
eqeq1d |
|- ( l = m -> ( ( vol* ` ( f ` l ) ) = 0 <-> ( vol* ` ( f ` m ) ) = 0 ) ) |
| 74 |
71 73
|
anbi12d |
|- ( l = m -> ( ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) <-> ( ( f ` m ) C_ RR /\ ( vol* ` ( f ` m ) ) = 0 ) ) ) |
| 75 |
74
|
rspccva |
|- ( ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) /\ m e. NN ) -> ( ( f ` m ) C_ RR /\ ( vol* ` ( f ` m ) ) = 0 ) ) |
| 76 |
75
|
simprd |
|- ( ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) /\ m e. NN ) -> ( vol* ` ( f ` m ) ) = 0 ) |
| 77 |
76
|
mpteq2dva |
|- ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) -> ( m e. NN |-> ( vol* ` ( f ` m ) ) ) = ( m e. NN |-> 0 ) ) |
| 78 |
77
|
seqeq3d |
|- ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) = seq 1 ( + , ( m e. NN |-> 0 ) ) ) |
| 79 |
78
|
rneqd |
|- ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) -> ran seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) = ran seq 1 ( + , ( m e. NN |-> 0 ) ) ) |
| 80 |
79
|
supeq1d |
|- ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) -> sup ( ran seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) , RR* , < ) = sup ( ran seq 1 ( + , ( m e. NN |-> 0 ) ) , RR* , < ) ) |
| 81 |
|
0cn |
|- 0 e. CC |
| 82 |
|
ser1const |
|- ( ( 0 e. CC /\ l e. NN ) -> ( seq 1 ( + , ( NN X. { 0 } ) ) ` l ) = ( l x. 0 ) ) |
| 83 |
81 82
|
mpan |
|- ( l e. NN -> ( seq 1 ( + , ( NN X. { 0 } ) ) ` l ) = ( l x. 0 ) ) |
| 84 |
|
nncn |
|- ( l e. NN -> l e. CC ) |
| 85 |
84
|
mul01d |
|- ( l e. NN -> ( l x. 0 ) = 0 ) |
| 86 |
83 85
|
eqtrd |
|- ( l e. NN -> ( seq 1 ( + , ( NN X. { 0 } ) ) ` l ) = 0 ) |
| 87 |
86
|
mpteq2ia |
|- ( l e. NN |-> ( seq 1 ( + , ( NN X. { 0 } ) ) ` l ) ) = ( l e. NN |-> 0 ) |
| 88 |
|
fconstmpt |
|- ( NN X. { 0 } ) = ( m e. NN |-> 0 ) |
| 89 |
|
seqeq3 |
|- ( ( NN X. { 0 } ) = ( m e. NN |-> 0 ) -> seq 1 ( + , ( NN X. { 0 } ) ) = seq 1 ( + , ( m e. NN |-> 0 ) ) ) |
| 90 |
88 89
|
ax-mp |
|- seq 1 ( + , ( NN X. { 0 } ) ) = seq 1 ( + , ( m e. NN |-> 0 ) ) |
| 91 |
|
1z |
|- 1 e. ZZ |
| 92 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( + , ( NN X. { 0 } ) ) Fn ( ZZ>= ` 1 ) ) |
| 93 |
91 92
|
ax-mp |
|- seq 1 ( + , ( NN X. { 0 } ) ) Fn ( ZZ>= ` 1 ) |
| 94 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 95 |
94
|
fneq2i |
|- ( seq 1 ( + , ( NN X. { 0 } ) ) Fn NN <-> seq 1 ( + , ( NN X. { 0 } ) ) Fn ( ZZ>= ` 1 ) ) |
| 96 |
|
dffn5 |
|- ( seq 1 ( + , ( NN X. { 0 } ) ) Fn NN <-> seq 1 ( + , ( NN X. { 0 } ) ) = ( l e. NN |-> ( seq 1 ( + , ( NN X. { 0 } ) ) ` l ) ) ) |
| 97 |
95 96
|
bitr3i |
|- ( seq 1 ( + , ( NN X. { 0 } ) ) Fn ( ZZ>= ` 1 ) <-> seq 1 ( + , ( NN X. { 0 } ) ) = ( l e. NN |-> ( seq 1 ( + , ( NN X. { 0 } ) ) ` l ) ) ) |
| 98 |
93 97
|
mpbi |
|- seq 1 ( + , ( NN X. { 0 } ) ) = ( l e. NN |-> ( seq 1 ( + , ( NN X. { 0 } ) ) ` l ) ) |
| 99 |
90 98
|
eqtr3i |
|- seq 1 ( + , ( m e. NN |-> 0 ) ) = ( l e. NN |-> ( seq 1 ( + , ( NN X. { 0 } ) ) ` l ) ) |
| 100 |
|
fconstmpt |
|- ( NN X. { 0 } ) = ( l e. NN |-> 0 ) |
| 101 |
87 99 100
|
3eqtr4i |
|- seq 1 ( + , ( m e. NN |-> 0 ) ) = ( NN X. { 0 } ) |
| 102 |
101
|
rneqi |
|- ran seq 1 ( + , ( m e. NN |-> 0 ) ) = ran ( NN X. { 0 } ) |
| 103 |
|
1nn |
|- 1 e. NN |
| 104 |
|
ne0i |
|- ( 1 e. NN -> NN =/= (/) ) |
| 105 |
|
rnxp |
|- ( NN =/= (/) -> ran ( NN X. { 0 } ) = { 0 } ) |
| 106 |
103 104 105
|
mp2b |
|- ran ( NN X. { 0 } ) = { 0 } |
| 107 |
102 106
|
eqtri |
|- ran seq 1 ( + , ( m e. NN |-> 0 ) ) = { 0 } |
| 108 |
107
|
supeq1i |
|- sup ( ran seq 1 ( + , ( m e. NN |-> 0 ) ) , RR* , < ) = sup ( { 0 } , RR* , < ) |
| 109 |
|
xrltso |
|- < Or RR* |
| 110 |
|
0xr |
|- 0 e. RR* |
| 111 |
|
supsn |
|- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
| 112 |
109 110 111
|
mp2an |
|- sup ( { 0 } , RR* , < ) = 0 |
| 113 |
108 112
|
eqtri |
|- sup ( ran seq 1 ( + , ( m e. NN |-> 0 ) ) , RR* , < ) = 0 |
| 114 |
80 113
|
eqtrdi |
|- ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) -> sup ( ran seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) , RR* , < ) = 0 ) |
| 115 |
114
|
adantl |
|- ( ( f : NN -onto-> A /\ A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) ) -> sup ( ran seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) , RR* , < ) = 0 ) |
| 116 |
62 69 115
|
3brtr3d |
|- ( ( f : NN -onto-> A /\ A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) ) -> ( vol* ` U. A ) <_ 0 ) |
| 117 |
116
|
ex |
|- ( f : NN -onto-> A -> ( A. l e. NN ( ( f ` l ) C_ RR /\ ( vol* ` ( f ` l ) ) = 0 ) -> ( vol* ` U. A ) <_ 0 ) ) |
| 118 |
49 117
|
sylbid |
|- ( f : NN -onto-> A -> ( A. x e. A ( x C_ RR /\ ( vol* ` x ) = 0 ) -> ( vol* ` U. A ) <_ 0 ) ) |
| 119 |
118
|
exlimiv |
|- ( E. f f : NN -onto-> A -> ( A. x e. A ( x C_ RR /\ ( vol* ` x ) = 0 ) -> ( vol* ` U. A ) <_ 0 ) ) |
| 120 |
119
|
imp |
|- ( ( E. f f : NN -onto-> A /\ A. x e. A ( x C_ RR /\ ( vol* ` x ) = 0 ) ) -> ( vol* ` U. A ) <_ 0 ) |
| 121 |
17 39 120
|
syl2an |
|- ( ( ( A =/= (/) /\ A ~<_ NN ) /\ ( A. x e. A x ~<_ NN /\ U. A C_ RR ) ) -> ( vol* ` U. A ) <_ 0 ) |
| 122 |
|
ovolcl |
|- ( U. A C_ RR -> ( vol* ` U. A ) e. RR* ) |
| 123 |
|
xrletri3 |
|- ( ( 0 e. RR* /\ ( vol* ` U. A ) e. RR* ) -> ( 0 = ( vol* ` U. A ) <-> ( 0 <_ ( vol* ` U. A ) /\ ( vol* ` U. A ) <_ 0 ) ) ) |
| 124 |
110 122 123
|
sylancr |
|- ( U. A C_ RR -> ( 0 = ( vol* ` U. A ) <-> ( 0 <_ ( vol* ` U. A ) /\ ( vol* ` U. A ) <_ 0 ) ) ) |
| 125 |
124
|
ad2antll |
|- ( ( ( A =/= (/) /\ A ~<_ NN ) /\ ( A. x e. A x ~<_ NN /\ U. A C_ RR ) ) -> ( 0 = ( vol* ` U. A ) <-> ( 0 <_ ( vol* ` U. A ) /\ ( vol* ` U. A ) <_ 0 ) ) ) |
| 126 |
10 121 125
|
mpbir2and |
|- ( ( ( A =/= (/) /\ A ~<_ NN ) /\ ( A. x e. A x ~<_ NN /\ U. A C_ RR ) ) -> 0 = ( vol* ` U. A ) ) |
| 127 |
126
|
expl |
|- ( A =/= (/) -> ( ( A ~<_ NN /\ ( A. x e. A x ~<_ NN /\ U. A C_ RR ) ) -> 0 = ( vol* ` U. A ) ) ) |
| 128 |
8 127
|
pm2.61ine |
|- ( ( A ~<_ NN /\ ( A. x e. A x ~<_ NN /\ U. A C_ RR ) ) -> 0 = ( vol* ` U. A ) ) |
| 129 |
|
renepnf |
|- ( 0 e. RR -> 0 =/= +oo ) |
| 130 |
56 129
|
mp1i |
|- ( U. A = RR -> 0 =/= +oo ) |
| 131 |
|
fveq2 |
|- ( U. A = RR -> ( vol* ` U. A ) = ( vol* ` RR ) ) |
| 132 |
|
ovolre |
|- ( vol* ` RR ) = +oo |
| 133 |
131 132
|
eqtrdi |
|- ( U. A = RR -> ( vol* ` U. A ) = +oo ) |
| 134 |
130 133
|
neeqtrrd |
|- ( U. A = RR -> 0 =/= ( vol* ` U. A ) ) |
| 135 |
134
|
necon2i |
|- ( 0 = ( vol* ` U. A ) -> U. A =/= RR ) |
| 136 |
128 135
|
syl |
|- ( ( A ~<_ NN /\ ( A. x e. A x ~<_ NN /\ U. A C_ RR ) ) -> U. A =/= RR ) |
| 137 |
136
|
expr |
|- ( ( A ~<_ NN /\ A. x e. A x ~<_ NN ) -> ( U. A C_ RR -> U. A =/= RR ) ) |
| 138 |
|
eqimss |
|- ( U. A = RR -> U. A C_ RR ) |
| 139 |
138
|
necon3bi |
|- ( -. U. A C_ RR -> U. A =/= RR ) |
| 140 |
137 139
|
pm2.61d1 |
|- ( ( A ~<_ NN /\ A. x e. A x ~<_ NN ) -> U. A =/= RR ) |