Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) = seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) |
2 |
|
eqid |
|- ( m e. NN |-> ( vol* ` ( f ` m ) ) ) = ( m e. NN |-> ( vol* ` ( f ` m ) ) ) |
3 |
|
fveq2 |
|- ( n = m -> ( f ` n ) = ( f ` m ) ) |
4 |
3
|
sseq1d |
|- ( n = m -> ( ( f ` n ) C_ RR <-> ( f ` m ) C_ RR ) ) |
5 |
|
2fveq3 |
|- ( n = m -> ( vol* ` ( f ` n ) ) = ( vol* ` ( f ` m ) ) ) |
6 |
5
|
eleq1d |
|- ( n = m -> ( ( vol* ` ( f ` n ) ) e. RR <-> ( vol* ` ( f ` m ) ) e. RR ) ) |
7 |
4 6
|
anbi12d |
|- ( n = m -> ( ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) <-> ( ( f ` m ) C_ RR /\ ( vol* ` ( f ` m ) ) e. RR ) ) ) |
8 |
7
|
rspccva |
|- ( ( A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) /\ m e. NN ) -> ( ( f ` m ) C_ RR /\ ( vol* ` ( f ` m ) ) e. RR ) ) |
9 |
8
|
simpld |
|- ( ( A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) /\ m e. NN ) -> ( f ` m ) C_ RR ) |
10 |
9
|
adantll |
|- ( ( ( f Fn NN /\ A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) ) /\ m e. NN ) -> ( f ` m ) C_ RR ) |
11 |
8
|
simprd |
|- ( ( A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) /\ m e. NN ) -> ( vol* ` ( f ` m ) ) e. RR ) |
12 |
11
|
adantll |
|- ( ( ( f Fn NN /\ A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) ) /\ m e. NN ) -> ( vol* ` ( f ` m ) ) e. RR ) |
13 |
1 2 10 12
|
ovoliun |
|- ( ( f Fn NN /\ A. n e. NN ( ( f ` n ) C_ RR /\ ( vol* ` ( f ` n ) ) e. RR ) ) -> ( vol* ` U_ m e. NN ( f ` m ) ) <_ sup ( ran seq 1 ( + , ( m e. NN |-> ( vol* ` ( f ` m ) ) ) ) , RR* , < ) ) |
14 |
13
|
ovoliunnfl |
|- ( ( A ~<_ NN /\ A. x e. A x ~<_ NN ) -> U. A =/= RR ) |