Metamath Proof Explorer


Theorem ex-ovoliunnfl

Description: Demonstration of ovoliunnfl . (Contributed by Brendan Leahy, 21-Nov-2017)

Ref Expression
Assertion ex-ovoliunnfl AxAxA

Proof

Step Hyp Ref Expression
1 eqid seq1+mvol*fm=seq1+mvol*fm
2 eqid mvol*fm=mvol*fm
3 fveq2 n=mfn=fm
4 3 sseq1d n=mfnfm
5 2fveq3 n=mvol*fn=vol*fm
6 5 eleq1d n=mvol*fnvol*fm
7 4 6 anbi12d n=mfnvol*fnfmvol*fm
8 7 rspccva nfnvol*fnmfmvol*fm
9 8 simpld nfnvol*fnmfm
10 9 adantll fFnnfnvol*fnmfm
11 8 simprd nfnvol*fnmvol*fm
12 11 adantll fFnnfnvol*fnmvol*fm
13 1 2 10 12 ovoliun fFnnfnvol*fnvol*mfmsupranseq1+mvol*fm*<
14 13 ovoliunnfl AxAxA