Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
ex-ovoliunnfl
Next ⟩
voliunnfl
Metamath Proof Explorer
Ascii
Unicode
Theorem
ex-ovoliunnfl
Description:
Demonstration of
ovoliunnfl
.
(Contributed by
Brendan Leahy
, 21-Nov-2017)
Ref
Expression
Assertion
ex-ovoliunnfl
⊢
A
≼
ℕ
∧
∀
x
∈
A
x
≼
ℕ
→
⋃
A
≠
ℝ
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
seq
1
+
m
∈
ℕ
⟼
vol
*
⁡
f
⁡
m
=
seq
1
+
m
∈
ℕ
⟼
vol
*
⁡
f
⁡
m
2
eqid
⊢
m
∈
ℕ
⟼
vol
*
⁡
f
⁡
m
=
m
∈
ℕ
⟼
vol
*
⁡
f
⁡
m
3
fveq2
⊢
n
=
m
→
f
⁡
n
=
f
⁡
m
4
3
sseq1d
⊢
n
=
m
→
f
⁡
n
⊆
ℝ
↔
f
⁡
m
⊆
ℝ
5
2fveq3
⊢
n
=
m
→
vol
*
⁡
f
⁡
n
=
vol
*
⁡
f
⁡
m
6
5
eleq1d
⊢
n
=
m
→
vol
*
⁡
f
⁡
n
∈
ℝ
↔
vol
*
⁡
f
⁡
m
∈
ℝ
7
4
6
anbi12d
⊢
n
=
m
→
f
⁡
n
⊆
ℝ
∧
vol
*
⁡
f
⁡
n
∈
ℝ
↔
f
⁡
m
⊆
ℝ
∧
vol
*
⁡
f
⁡
m
∈
ℝ
8
7
rspccva
⊢
∀
n
∈
ℕ
f
⁡
n
⊆
ℝ
∧
vol
*
⁡
f
⁡
n
∈
ℝ
∧
m
∈
ℕ
→
f
⁡
m
⊆
ℝ
∧
vol
*
⁡
f
⁡
m
∈
ℝ
9
8
simpld
⊢
∀
n
∈
ℕ
f
⁡
n
⊆
ℝ
∧
vol
*
⁡
f
⁡
n
∈
ℝ
∧
m
∈
ℕ
→
f
⁡
m
⊆
ℝ
10
9
adantll
⊢
f
Fn
ℕ
∧
∀
n
∈
ℕ
f
⁡
n
⊆
ℝ
∧
vol
*
⁡
f
⁡
n
∈
ℝ
∧
m
∈
ℕ
→
f
⁡
m
⊆
ℝ
11
8
simprd
⊢
∀
n
∈
ℕ
f
⁡
n
⊆
ℝ
∧
vol
*
⁡
f
⁡
n
∈
ℝ
∧
m
∈
ℕ
→
vol
*
⁡
f
⁡
m
∈
ℝ
12
11
adantll
⊢
f
Fn
ℕ
∧
∀
n
∈
ℕ
f
⁡
n
⊆
ℝ
∧
vol
*
⁡
f
⁡
n
∈
ℝ
∧
m
∈
ℕ
→
vol
*
⁡
f
⁡
m
∈
ℝ
13
1
2
10
12
ovoliun
⊢
f
Fn
ℕ
∧
∀
n
∈
ℕ
f
⁡
n
⊆
ℝ
∧
vol
*
⁡
f
⁡
n
∈
ℝ
→
vol
*
⁡
⋃
m
∈
ℕ
f
⁡
m
≤
sup
ran
⁡
seq
1
+
m
∈
ℕ
⟼
vol
*
⁡
f
⁡
m
ℝ
*
<
14
13
ovoliunnfl
⊢
A
≼
ℕ
∧
∀
x
∈
A
x
≼
ℕ
→
⋃
A
≠
ℝ