Metamath Proof Explorer


Theorem ex-ovoliunnfl

Description: Demonstration of ovoliunnfl . (Contributed by Brendan Leahy, 21-Nov-2017)

Ref Expression
Assertion ex-ovoliunnfl A x A x A

Proof

Step Hyp Ref Expression
1 eqid seq 1 + m vol * f m = seq 1 + m vol * f m
2 eqid m vol * f m = m vol * f m
3 fveq2 n = m f n = f m
4 3 sseq1d n = m f n f m
5 2fveq3 n = m vol * f n = vol * f m
6 5 eleq1d n = m vol * f n vol * f m
7 4 6 anbi12d n = m f n vol * f n f m vol * f m
8 7 rspccva n f n vol * f n m f m vol * f m
9 8 simpld n f n vol * f n m f m
10 9 adantll f Fn n f n vol * f n m f m
11 8 simprd n f n vol * f n m vol * f m
12 11 adantll f Fn n f n vol * f n m vol * f m
13 1 2 10 12 ovoliun f Fn n f n vol * f n vol * m f m sup ran seq 1 + m vol * f m * <
14 13 ovoliunnfl A x A x A