Metamath Proof Explorer


Theorem ovoliun

Description: The Lebesgue outer measure function is countably sub-additive. (Many books allow +oo as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss , so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovoliun.t T=seq1+G
ovoliun.g G=nvol*A
ovoliun.a φnA
ovoliun.v φnvol*A
Assertion ovoliun φvol*nAsupranT*<

Proof

Step Hyp Ref Expression
1 ovoliun.t T=seq1+G
2 ovoliun.g G=nvol*A
3 ovoliun.a φnA
4 ovoliun.v φnvol*A
5 mnfxr −∞*
6 5 a1i φ−∞*
7 nnuz =1
8 1zzd φ1
9 4 2 fmptd φG:
10 9 ffvelcdmda φkGk
11 7 8 10 serfre φseq1+G:
12 1 feq1i T:seq1+G:
13 11 12 sylibr φT:
14 1nn 1
15 ffvelcdm T:1T1
16 13 14 15 sylancl φT1
17 16 rexrd φT1*
18 13 frnd φranT
19 ressxr *
20 18 19 sstrdi φranT*
21 supxrcl ranT*supranT*<*
22 20 21 syl φsupranT*<*
23 16 mnfltd φ−∞<T1
24 13 ffnd φTFn
25 fnfvelrn TFn1T1ranT
26 24 14 25 sylancl φT1ranT
27 supxrub ranT*T1ranTT1supranT*<
28 20 26 27 syl2anc φT1supranT*<
29 6 17 22 23 28 xrltletrd φ−∞<supranT*<
30 xrrebnd supranT*<*supranT*<−∞<supranT*<supranT*<<+∞
31 22 30 syl φsupranT*<−∞<supranT*<supranT*<<+∞
32 29 31 mpbirand φsupranT*<supranT*<<+∞
33 nfcv _mA
34 nfcsb1v _nm/nA
35 csbeq1a n=mA=m/nA
36 33 34 35 cbviun nA=mm/nA
37 36 fveq2i vol*nA=vol*mm/nA
38 nfcv _mvol*A
39 nfcv _nvol*
40 39 34 nffv _nvol*m/nA
41 35 fveq2d n=mvol*A=vol*m/nA
42 38 40 41 cbvmpt nvol*A=mvol*m/nA
43 2 42 eqtri G=mvol*m/nA
44 3 ralrimiva φnA
45 nfv mA
46 nfcv _n
47 34 46 nfss nm/nA
48 35 sseq1d n=mAm/nA
49 45 47 48 cbvralw nAmm/nA
50 44 49 sylib φmm/nA
51 50 ad2antrr φsupranT*<x+mm/nA
52 51 r19.21bi φsupranT*<x+mm/nA
53 4 ralrimiva φnvol*A
54 38 nfel1 mvol*A
55 40 nfel1 nvol*m/nA
56 41 eleq1d n=mvol*Avol*m/nA
57 54 55 56 cbvralw nvol*Amvol*m/nA
58 53 57 sylib φmvol*m/nA
59 58 ad2antrr φsupranT*<x+mvol*m/nA
60 59 r19.21bi φsupranT*<x+mvol*m/nA
61 simplr φsupranT*<x+supranT*<
62 simpr φsupranT*<x+x+
63 1 43 52 60 61 62 ovoliunlem3 φsupranT*<x+vol*mm/nAsupranT*<+x
64 37 63 eqbrtrid φsupranT*<x+vol*nAsupranT*<+x
65 64 ralrimiva φsupranT*<x+vol*nAsupranT*<+x
66 iunss nAnA
67 44 66 sylibr φnA
68 ovolcl nAvol*nA*
69 67 68 syl φvol*nA*
70 xralrple vol*nA*supranT*<vol*nAsupranT*<x+vol*nAsupranT*<+x
71 69 70 sylan φsupranT*<vol*nAsupranT*<x+vol*nAsupranT*<+x
72 65 71 mpbird φsupranT*<vol*nAsupranT*<
73 72 ex φsupranT*<vol*nAsupranT*<
74 32 73 sylbird φsupranT*<<+∞vol*nAsupranT*<
75 nltpnft supranT*<*supranT*<=+∞¬supranT*<<+∞
76 22 75 syl φsupranT*<=+∞¬supranT*<<+∞
77 pnfge vol*nA*vol*nA+∞
78 69 77 syl φvol*nA+∞
79 breq2 supranT*<=+∞vol*nAsupranT*<vol*nA+∞
80 78 79 syl5ibrcom φsupranT*<=+∞vol*nAsupranT*<
81 76 80 sylbird φ¬supranT*<<+∞vol*nAsupranT*<
82 74 81 pm2.61d φvol*nAsupranT*<