Metamath Proof Explorer


Theorem ovoliun2

Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun .) (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovoliun.t T=seq1+G
ovoliun.g G=nvol*A
ovoliun.a φnA
ovoliun.v φnvol*A
ovoliun2.t φTdom
Assertion ovoliun2 φvol*nAnvol*A

Proof

Step Hyp Ref Expression
1 ovoliun.t T=seq1+G
2 ovoliun.g G=nvol*A
3 ovoliun.a φnA
4 ovoliun.v φnvol*A
5 ovoliun2.t φTdom
6 1 2 3 4 ovoliun φvol*nAsupranT*<
7 nnuz =1
8 1zzd φ1
9 fvex vol*m/nAV
10 nfcv _mvol*A
11 nfcv _nvol*
12 nfcsb1v _nm/nA
13 11 12 nffv _nvol*m/nA
14 csbeq1a n=mA=m/nA
15 14 fveq2d n=mvol*A=vol*m/nA
16 10 13 15 cbvmpt nvol*A=mvol*m/nA
17 2 16 eqtri G=mvol*m/nA
18 17 fvmpt2 mvol*m/nAVGm=vol*m/nA
19 9 18 mpan2 mGm=vol*m/nA
20 19 adantl φmGm=vol*m/nA
21 4 ralrimiva φnvol*A
22 10 nfel1 mvol*A
23 13 nfel1 nvol*m/nA
24 15 eleq1d n=mvol*Avol*m/nA
25 22 23 24 cbvralw nvol*Amvol*m/nA
26 21 25 sylib φmvol*m/nA
27 26 r19.21bi φmvol*m/nA
28 20 27 eqeltrd φmGm
29 7 8 28 serfre φseq1+G:
30 1 feq1i T:seq1+G:
31 29 30 sylibr φT:
32 31 frnd φranT
33 1nn 1
34 31 fdmd φdomT=
35 33 34 eleqtrrid φ1domT
36 35 ne0d φdomT
37 dm0rn0 domT=ranT=
38 37 necon3bii domTranT
39 36 38 sylib φranT
40 1 5 eqeltrrid φseq1+Gdom
41 7 8 20 27 40 isumrecl φmvol*m/nA
42 elfznn m1km
43 42 adantl φkm1km
44 43 19 syl φkm1kGm=vol*m/nA
45 simpr φkk
46 45 7 eleqtrdi φkk1
47 simpl φkφ
48 47 42 27 syl2an φkm1kvol*m/nA
49 48 recnd φkm1kvol*m/nA
50 44 46 49 fsumser φkm=1kvol*m/nA=seq1+Gk
51 1 fveq1i Tk=seq1+Gk
52 50 51 eqtr4di φkm=1kvol*m/nA=Tk
53 fzfid φ1kFin
54 fz1ssnn 1k
55 54 a1i φ1k
56 3 ralrimiva φnA
57 nfv mA
58 nfcv _n
59 12 58 nfss nm/nA
60 14 sseq1d n=mAm/nA
61 57 59 60 cbvralw nAmm/nA
62 56 61 sylib φmm/nA
63 62 r19.21bi φmm/nA
64 ovolge0 m/nA0vol*m/nA
65 63 64 syl φm0vol*m/nA
66 7 8 53 55 20 27 65 40 isumless φm=1kvol*m/nAmvol*m/nA
67 66 adantr φkm=1kvol*m/nAmvol*m/nA
68 52 67 eqbrtrrd φkTkmvol*m/nA
69 68 ralrimiva φkTkmvol*m/nA
70 brralrspcev mvol*m/nAkTkmvol*m/nAxkTkx
71 41 69 70 syl2anc φxkTkx
72 31 ffnd φTFn
73 breq1 z=TkzxTkx
74 73 ralrn TFnzranTzxkTkx
75 72 74 syl φzranTzxkTkx
76 75 rexbidv φxzranTzxxkTkx
77 71 76 mpbird φxzranTzx
78 supxrre ranTranTxzranTzxsupranT*<=supranT<
79 32 39 77 78 syl3anc φsupranT*<=supranT<
80 7 1 8 20 27 65 71 isumsup φmvol*m/nA=supranT<
81 79 80 eqtr4d φsupranT*<=mvol*m/nA
82 10 13 15 cbvsumi nvol*A=mvol*m/nA
83 81 82 eqtr4di φsupranT*<=nvol*A
84 6 83 breqtrd φvol*nAnvol*A