Metamath Proof Explorer


Theorem voliunnfl

Description: voliun is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017)

Ref Expression
Hypotheses voliunnfl.1 S = seq 1 + G
voliunnfl.2 G = n vol f n
voliunnfl.3 n f n dom vol vol f n Disj n f n vol n f n = sup ran S * <
Assertion voliunnfl A x A x A

Proof

Step Hyp Ref Expression
1 voliunnfl.1 S = seq 1 + G
2 voliunnfl.2 G = n vol f n
3 voliunnfl.3 n f n dom vol vol f n Disj n f n vol n f n = sup ran S * <
4 unieq A = A =
5 uni0 =
6 4 5 eqtrdi A = A =
7 6 fveq2d A = vol A = vol
8 0mbl dom vol
9 mblvol dom vol vol = vol *
10 8 9 ax-mp vol = vol *
11 ovol0 vol * = 0
12 10 11 eqtri vol = 0
13 7 12 eqtr2di A = 0 = vol A
14 13 a1d A = A x A x A 0 = vol A
15 reldom Rel
16 15 brrelex1i A A V
17 0sdomg A V A A
18 16 17 syl A A A
19 18 biimparc A A A
20 fodomr A A g g : onto A
21 19 20 sylancom A A g g : onto A
22 unissb A x A x
23 22 anbi1i A x A x x A x x A x
24 r19.26 x A x x x A x x A x
25 23 24 bitr4i A x A x x A x x
26 ovolctb2 x x vol * x = 0
27 26 ex x x vol * x = 0
28 27 imdistani x x x vol * x = 0
29 28 ralimi x A x x x A x vol * x = 0
30 25 29 sylbi A x A x x A x vol * x = 0
31 30 ancoms x A x A x A x vol * x = 0
32 foima g : onto A g = A
33 32 raleqdv g : onto A x g x vol * x = 0 x A x vol * x = 0
34 fofn g : onto A g Fn
35 ssid
36 sseq1 x = g m x g m
37 fveqeq2 x = g m vol * x = 0 vol * g m = 0
38 36 37 anbi12d x = g m x vol * x = 0 g m vol * g m = 0
39 38 ralima g Fn x g x vol * x = 0 m g m vol * g m = 0
40 34 35 39 sylancl g : onto A x g x vol * x = 0 m g m vol * g m = 0
41 33 40 bitr3d g : onto A x A x vol * x = 0 m g m vol * g m = 0
42 difss g m l 1 ..^ m g l g m
43 ovolssnul g m l 1 ..^ m g l g m g m vol * g m = 0 vol * g m l 1 ..^ m g l = 0
44 42 43 mp3an1 g m vol * g m = 0 vol * g m l 1 ..^ m g l = 0
45 ssdifss g m g m l 1 ..^ m g l
46 nulmbl g m l 1 ..^ m g l vol * g m l 1 ..^ m g l = 0 g m l 1 ..^ m g l dom vol
47 mblvol g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l = vol * g m l 1 ..^ m g l
48 47 eqeq1d g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l = 0 vol * g m l 1 ..^ m g l = 0
49 48 biimpar g m l 1 ..^ m g l dom vol vol * g m l 1 ..^ m g l = 0 vol g m l 1 ..^ m g l = 0
50 0re 0
51 49 50 eqeltrdi g m l 1 ..^ m g l dom vol vol * g m l 1 ..^ m g l = 0 vol g m l 1 ..^ m g l
52 51 expcom vol * g m l 1 ..^ m g l = 0 g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
53 52 ancld vol * g m l 1 ..^ m g l = 0 g m l 1 ..^ m g l dom vol g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
54 53 adantl g m l 1 ..^ m g l vol * g m l 1 ..^ m g l = 0 g m l 1 ..^ m g l dom vol g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
55 46 54 mpd g m l 1 ..^ m g l vol * g m l 1 ..^ m g l = 0 g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
56 45 55 sylan g m vol * g m l 1 ..^ m g l = 0 g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
57 44 56 syldan g m vol * g m = 0 g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
58 57 ralimi m g m vol * g m = 0 m g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
59 fveq2 m = n g m = g n
60 oveq2 m = n 1 ..^ m = 1 ..^ n
61 60 iuneq1d m = n l 1 ..^ m g l = l 1 ..^ n g l
62 59 61 difeq12d m = n g m l 1 ..^ m g l = g n l 1 ..^ n g l
63 eqid m g m l 1 ..^ m g l = m g m l 1 ..^ m g l
64 fvex g n V
65 difexg g n V g n l 1 ..^ n g l V
66 64 65 ax-mp g n l 1 ..^ n g l V
67 62 63 66 fvmpt n m g m l 1 ..^ m g l n = g n l 1 ..^ n g l
68 67 eleq1d n m g m l 1 ..^ m g l n dom vol g n l 1 ..^ n g l dom vol
69 67 fveq2d n vol m g m l 1 ..^ m g l n = vol g n l 1 ..^ n g l
70 69 eleq1d n vol m g m l 1 ..^ m g l n vol g n l 1 ..^ n g l
71 68 70 anbi12d n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n g n l 1 ..^ n g l dom vol vol g n l 1 ..^ n g l
72 71 ralbiia n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n n g n l 1 ..^ n g l dom vol vol g n l 1 ..^ n g l
73 fveq2 n = m g n = g m
74 oveq2 n = m 1 ..^ n = 1 ..^ m
75 74 iuneq1d n = m l 1 ..^ n g l = l 1 ..^ m g l
76 73 75 difeq12d n = m g n l 1 ..^ n g l = g m l 1 ..^ m g l
77 76 eleq1d n = m g n l 1 ..^ n g l dom vol g m l 1 ..^ m g l dom vol
78 76 fveq2d n = m vol g n l 1 ..^ n g l = vol g m l 1 ..^ m g l
79 78 eleq1d n = m vol g n l 1 ..^ n g l vol g m l 1 ..^ m g l
80 77 79 anbi12d n = m g n l 1 ..^ n g l dom vol vol g n l 1 ..^ n g l g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
81 80 cbvralvw n g n l 1 ..^ n g l dom vol vol g n l 1 ..^ n g l m g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
82 72 81 bitri n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n m g m l 1 ..^ m g l dom vol vol g m l 1 ..^ m g l
83 58 82 sylibr m g m vol * g m = 0 n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n
84 fveq2 n = l g n = g l
85 84 iundisj2 Disj n g n l 1 ..^ n g l
86 disjeq2 n m g m l 1 ..^ m g l n = g n l 1 ..^ n g l Disj n m g m l 1 ..^ m g l n Disj n g n l 1 ..^ n g l
87 86 67 mprg Disj n m g m l 1 ..^ m g l n Disj n g n l 1 ..^ n g l
88 85 87 mpbir Disj n m g m l 1 ..^ m g l n
89 nnex V
90 89 mptex m g m l 1 ..^ m g l V
91 fveq1 f = m g m l 1 ..^ m g l f n = m g m l 1 ..^ m g l n
92 91 eleq1d f = m g m l 1 ..^ m g l f n dom vol m g m l 1 ..^ m g l n dom vol
93 91 fveq2d f = m g m l 1 ..^ m g l vol f n = vol m g m l 1 ..^ m g l n
94 93 eleq1d f = m g m l 1 ..^ m g l vol f n vol m g m l 1 ..^ m g l n
95 92 94 anbi12d f = m g m l 1 ..^ m g l f n dom vol vol f n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n
96 95 ralbidv f = m g m l 1 ..^ m g l n f n dom vol vol f n n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n
97 91 adantr f = m g m l 1 ..^ m g l n f n = m g m l 1 ..^ m g l n
98 97 disjeq2dv f = m g m l 1 ..^ m g l Disj n f n Disj n m g m l 1 ..^ m g l n
99 96 98 anbi12d f = m g m l 1 ..^ m g l n f n dom vol vol f n Disj n f n n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n Disj n m g m l 1 ..^ m g l n
100 91 iuneq2d f = m g m l 1 ..^ m g l n f n = n m g m l 1 ..^ m g l n
101 100 fveq2d f = m g m l 1 ..^ m g l vol n f n = vol n m g m l 1 ..^ m g l n
102 seqeq3 G = n vol f n seq 1 + G = seq 1 + n vol f n
103 2 102 ax-mp seq 1 + G = seq 1 + n vol f n
104 1 103 eqtri S = seq 1 + n vol f n
105 104 rneqi ran S = ran seq 1 + n vol f n
106 105 supeq1i sup ran S * < = sup ran seq 1 + n vol f n * <
107 93 mpteq2dv f = m g m l 1 ..^ m g l n vol f n = n vol m g m l 1 ..^ m g l n
108 107 seqeq3d f = m g m l 1 ..^ m g l seq 1 + n vol f n = seq 1 + n vol m g m l 1 ..^ m g l n
109 108 rneqd f = m g m l 1 ..^ m g l ran seq 1 + n vol f n = ran seq 1 + n vol m g m l 1 ..^ m g l n
110 109 supeq1d f = m g m l 1 ..^ m g l sup ran seq 1 + n vol f n * < = sup ran seq 1 + n vol m g m l 1 ..^ m g l n * <
111 106 110 syl5eq f = m g m l 1 ..^ m g l sup ran S * < = sup ran seq 1 + n vol m g m l 1 ..^ m g l n * <
112 101 111 eqeq12d f = m g m l 1 ..^ m g l vol n f n = sup ran S * < vol n m g m l 1 ..^ m g l n = sup ran seq 1 + n vol m g m l 1 ..^ m g l n * <
113 99 112 imbi12d f = m g m l 1 ..^ m g l n f n dom vol vol f n Disj n f n vol n f n = sup ran S * < n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n Disj n m g m l 1 ..^ m g l n vol n m g m l 1 ..^ m g l n = sup ran seq 1 + n vol m g m l 1 ..^ m g l n * <
114 90 113 3 vtocl n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n Disj n m g m l 1 ..^ m g l n vol n m g m l 1 ..^ m g l n = sup ran seq 1 + n vol m g m l 1 ..^ m g l n * <
115 67 iuneq2i n m g m l 1 ..^ m g l n = n g n l 1 ..^ n g l
116 115 fveq2i vol n m g m l 1 ..^ m g l n = vol n g n l 1 ..^ n g l
117 69 mpteq2ia n vol m g m l 1 ..^ m g l n = n vol g n l 1 ..^ n g l
118 seqeq3 n vol m g m l 1 ..^ m g l n = n vol g n l 1 ..^ n g l seq 1 + n vol m g m l 1 ..^ m g l n = seq 1 + n vol g n l 1 ..^ n g l
119 117 118 ax-mp seq 1 + n vol m g m l 1 ..^ m g l n = seq 1 + n vol g n l 1 ..^ n g l
120 119 rneqi ran seq 1 + n vol m g m l 1 ..^ m g l n = ran seq 1 + n vol g n l 1 ..^ n g l
121 120 supeq1i sup ran seq 1 + n vol m g m l 1 ..^ m g l n * < = sup ran seq 1 + n vol g n l 1 ..^ n g l * <
122 114 116 121 3eqtr3g n m g m l 1 ..^ m g l n dom vol vol m g m l 1 ..^ m g l n Disj n m g m l 1 ..^ m g l n vol n g n l 1 ..^ n g l = sup ran seq 1 + n vol g n l 1 ..^ n g l * <
123 83 88 122 sylancl m g m vol * g m = 0 vol n g n l 1 ..^ n g l = sup ran seq 1 + n vol g n l 1 ..^ n g l * <
124 123 adantl g : onto A m g m vol * g m = 0 vol n g n l 1 ..^ n g l = sup ran seq 1 + n vol g n l 1 ..^ n g l * <
125 84 iundisj n g n = n g n l 1 ..^ n g l
126 fofun g : onto A Fun g
127 funiunfv Fun g n g n = g
128 126 127 syl g : onto A n g n = g
129 125 128 eqtr3id g : onto A n g n l 1 ..^ n g l = g
130 32 unieqd g : onto A g = A
131 129 130 eqtrd g : onto A n g n l 1 ..^ n g l = A
132 131 fveq2d g : onto A vol n g n l 1 ..^ n g l = vol A
133 132 adantr g : onto A m g m vol * g m = 0 vol n g n l 1 ..^ n g l = vol A
134 59 sseq1d m = n g m g n
135 59 fveqeq2d m = n vol * g m = 0 vol * g n = 0
136 134 135 anbi12d m = n g m vol * g m = 0 g n vol * g n = 0
137 136 rspccva m g m vol * g m = 0 n g n vol * g n = 0
138 ssdifss g n g n l 1 ..^ n g l
139 138 adantr g n vol * g n = 0 g n l 1 ..^ n g l
140 difss g n l 1 ..^ n g l g n
141 ovolssnul g n l 1 ..^ n g l g n g n vol * g n = 0 vol * g n l 1 ..^ n g l = 0
142 140 141 mp3an1 g n vol * g n = 0 vol * g n l 1 ..^ n g l = 0
143 139 142 jca g n vol * g n = 0 g n l 1 ..^ n g l vol * g n l 1 ..^ n g l = 0
144 nulmbl g n l 1 ..^ n g l vol * g n l 1 ..^ n g l = 0 g n l 1 ..^ n g l dom vol
145 mblvol g n l 1 ..^ n g l dom vol vol g n l 1 ..^ n g l = vol * g n l 1 ..^ n g l
146 143 144 145 3syl g n vol * g n = 0 vol g n l 1 ..^ n g l = vol * g n l 1 ..^ n g l
147 146 142 eqtrd g n vol * g n = 0 vol g n l 1 ..^ n g l = 0
148 137 147 syl m g m vol * g m = 0 n vol g n l 1 ..^ n g l = 0
149 148 mpteq2dva m g m vol * g m = 0 n vol g n l 1 ..^ n g l = n 0
150 149 seqeq3d m g m vol * g m = 0 seq 1 + n vol g n l 1 ..^ n g l = seq 1 + n 0
151 150 rneqd m g m vol * g m = 0 ran seq 1 + n vol g n l 1 ..^ n g l = ran seq 1 + n 0
152 151 supeq1d m g m vol * g m = 0 sup ran seq 1 + n vol g n l 1 ..^ n g l * < = sup ran seq 1 + n 0 * <
153 0cn 0
154 ser1const 0 m seq 1 + × 0 m = m 0
155 153 154 mpan m seq 1 + × 0 m = m 0
156 nncn m m
157 156 mul01d m m 0 = 0
158 155 157 eqtrd m seq 1 + × 0 m = 0
159 158 mpteq2ia m seq 1 + × 0 m = m 0
160 fconstmpt × 0 = n 0
161 seqeq3 × 0 = n 0 seq 1 + × 0 = seq 1 + n 0
162 160 161 ax-mp seq 1 + × 0 = seq 1 + n 0
163 1z 1
164 seqfn 1 seq 1 + × 0 Fn 1
165 163 164 ax-mp seq 1 + × 0 Fn 1
166 nnuz = 1
167 166 fneq2i seq 1 + × 0 Fn seq 1 + × 0 Fn 1
168 dffn5 seq 1 + × 0 Fn seq 1 + × 0 = m seq 1 + × 0 m
169 167 168 bitr3i seq 1 + × 0 Fn 1 seq 1 + × 0 = m seq 1 + × 0 m
170 165 169 mpbi seq 1 + × 0 = m seq 1 + × 0 m
171 162 170 eqtr3i seq 1 + n 0 = m seq 1 + × 0 m
172 fconstmpt × 0 = m 0
173 159 171 172 3eqtr4i seq 1 + n 0 = × 0
174 173 rneqi ran seq 1 + n 0 = ran × 0
175 1nn 1
176 ne0i 1
177 rnxp ran × 0 = 0
178 175 176 177 mp2b ran × 0 = 0
179 174 178 eqtri ran seq 1 + n 0 = 0
180 179 supeq1i sup ran seq 1 + n 0 * < = sup 0 * <
181 xrltso < Or *
182 0xr 0 *
183 supsn < Or * 0 * sup 0 * < = 0
184 181 182 183 mp2an sup 0 * < = 0
185 180 184 eqtri sup ran seq 1 + n 0 * < = 0
186 152 185 eqtrdi m g m vol * g m = 0 sup ran seq 1 + n vol g n l 1 ..^ n g l * < = 0
187 186 adantl g : onto A m g m vol * g m = 0 sup ran seq 1 + n vol g n l 1 ..^ n g l * < = 0
188 124 133 187 3eqtr3rd g : onto A m g m vol * g m = 0 0 = vol A
189 188 ex g : onto A m g m vol * g m = 0 0 = vol A
190 41 189 sylbid g : onto A x A x vol * x = 0 0 = vol A
191 31 190 syl5 g : onto A x A x A 0 = vol A
192 191 exlimiv g g : onto A x A x A 0 = vol A
193 21 192 syl A A x A x A 0 = vol A
194 193 expimpd A A x A x A 0 = vol A
195 14 194 pm2.61ine A x A x A 0 = vol A
196 renepnf 0 0 +∞
197 50 196 mp1i A = 0 +∞
198 fveq2 A = vol A = vol
199 rembl dom vol
200 mblvol dom vol vol = vol *
201 199 200 ax-mp vol = vol *
202 ovolre vol * = +∞
203 201 202 eqtri vol = +∞
204 198 203 eqtrdi A = vol A = +∞
205 197 204 neeqtrrd A = 0 vol A
206 205 necon2i 0 = vol A A
207 195 206 syl A x A x A A
208 207 expr A x A x A A
209 eqimss A = A
210 209 necon3bi ¬ A A
211 208 210 pm2.61d1 A x A x A