| Step |
Hyp |
Ref |
Expression |
| 1 |
|
voliunnfl.1 |
⊢ 𝑆 = seq 1 ( + , 𝐺 ) |
| 2 |
|
voliunnfl.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 3 |
|
voliunnfl.3 |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 4 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
| 5 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝐴 = ∅ → ( vol ‘ ∪ 𝐴 ) = ( vol ‘ ∅ ) ) |
| 8 |
|
0mbl |
⊢ ∅ ∈ dom vol |
| 9 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
| 11 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
| 12 |
10 11
|
eqtri |
⊢ ( vol ‘ ∅ ) = 0 |
| 13 |
7 12
|
eqtr2di |
⊢ ( 𝐴 = ∅ → 0 = ( vol ‘ ∪ 𝐴 ) ) |
| 14 |
13
|
a1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
| 15 |
|
reldom |
⊢ Rel ≼ |
| 16 |
15
|
brrelex1i |
⊢ ( 𝐴 ≼ ℕ → 𝐴 ∈ V ) |
| 17 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝐴 ≼ ℕ → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 19 |
18
|
biimparc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∅ ≺ 𝐴 ) |
| 20 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝐴 ∧ 𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto→ 𝐴 ) |
| 21 |
19 20
|
sylancom |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto→ 𝐴 ) |
| 22 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ ℝ ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ) |
| 23 |
22
|
anbi1i |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ) |
| 24 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ) |
| 25 |
23 24
|
bitr4i |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ) |
| 26 |
|
ovolctb2 |
⊢ ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( vol* ‘ 𝑥 ) = 0 ) |
| 27 |
26
|
ex |
⊢ ( 𝑥 ⊆ ℝ → ( 𝑥 ≼ ℕ → ( vol* ‘ 𝑥 ) = 0 ) ) |
| 28 |
27
|
imdistani |
⊢ ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
| 29 |
28
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
| 30 |
25 29
|
sylbi |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
| 31 |
30
|
ancoms |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
| 32 |
|
foima |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( 𝑔 “ ℕ ) = 𝐴 ) |
| 33 |
32
|
raleqdv |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) ) |
| 34 |
|
fofn |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → 𝑔 Fn ℕ ) |
| 35 |
|
ssid |
⊢ ℕ ⊆ ℕ |
| 36 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑚 ) → ( 𝑥 ⊆ ℝ ↔ ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ) ) |
| 37 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑚 ) → ( ( vol* ‘ 𝑥 ) = 0 ↔ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) |
| 38 |
36 37
|
anbi12d |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑚 ) → ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) ) |
| 39 |
38
|
ralima |
⊢ ( ( 𝑔 Fn ℕ ∧ ℕ ⊆ ℕ ) → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) ) |
| 40 |
34 35 39
|
sylancl |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) ) |
| 41 |
33 40
|
bitr3d |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) ) |
| 42 |
|
difss |
⊢ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) |
| 43 |
|
ovolssnul |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ∧ ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
| 44 |
42 43
|
mp3an1 |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
| 45 |
|
ssdifss |
⊢ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ → ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ) |
| 46 |
|
nulmbl |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ) |
| 47 |
|
mblvol |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
| 48 |
47
|
eqeq1d |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ↔ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) ) |
| 49 |
48
|
biimpar |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
| 50 |
|
0re |
⊢ 0 ∈ ℝ |
| 51 |
49 50
|
eqeltrdi |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) |
| 52 |
51
|
expcom |
⊢ ( ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 53 |
52
|
ancld |
⊢ ( ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) ) |
| 54 |
53
|
adantl |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) ) |
| 55 |
46 54
|
mpd |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 56 |
45 55
|
sylan |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 57 |
44 56
|
syldan |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 58 |
57
|
ralimi |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ∀ 𝑚 ∈ ℕ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 59 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑔 ‘ 𝑚 ) = ( 𝑔 ‘ 𝑛 ) ) |
| 60 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 ..^ 𝑚 ) = ( 1 ..^ 𝑛 ) ) |
| 61 |
60
|
iuneq1d |
⊢ ( 𝑚 = 𝑛 → ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) = ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
| 62 |
59 61
|
difeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) |
| 63 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
| 64 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑛 ) ∈ V |
| 65 |
|
difexg |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∈ V → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ V ) |
| 66 |
64 65
|
ax-mp |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ V |
| 67 |
62 63 66
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) = ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) |
| 68 |
67
|
eleq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ↔ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ) ) |
| 69 |
67
|
fveq2d |
⊢ ( 𝑛 ∈ ℕ → ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
| 70 |
69
|
eleq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 71 |
68 70
|
anbi12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ↔ ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) ) |
| 72 |
71
|
ralbiia |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ↔ ∀ 𝑛 ∈ ℕ ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑚 ) ) |
| 74 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑚 ) ) |
| 75 |
74
|
iuneq1d |
⊢ ( 𝑛 = 𝑚 → ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) = ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) |
| 76 |
73 75
|
difeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) = ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
| 77 |
76
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ↔ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ) ) |
| 78 |
76
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
| 79 |
78
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 80 |
77 79
|
anbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ↔ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) ) |
| 81 |
80
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ↔ ∀ 𝑚 ∈ ℕ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 82 |
72 81
|
bitri |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ↔ ∀ 𝑚 ∈ ℕ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
| 83 |
58 82
|
sylibr |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) |
| 84 |
|
fveq2 |
⊢ ( 𝑛 = 𝑙 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑙 ) ) |
| 85 |
84
|
iundisj2 |
⊢ Disj 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
| 86 |
|
disjeq2 |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) = ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) → ( Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
| 87 |
86 67
|
mprg |
⊢ ( Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) |
| 88 |
85 87
|
mpbir |
⊢ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) |
| 89 |
|
nnex |
⊢ ℕ ∈ V |
| 90 |
89
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ V |
| 91 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) |
| 92 |
91
|
eleq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ↔ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ) ) |
| 93 |
91
|
fveq2d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) |
| 94 |
93
|
eleq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) |
| 95 |
92 94
|
anbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ↔ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) ) |
| 96 |
95
|
ralbidv |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ↔ ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) ) |
| 97 |
91
|
adantr |
⊢ ( ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) |
| 98 |
97
|
disjeq2dv |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) |
| 99 |
96 98
|
anbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) |
| 100 |
91
|
iuneq2d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) |
| 101 |
100
|
fveq2d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) |
| 102 |
|
seqeq3 |
⊢ ( 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
| 103 |
2 102
|
ax-mp |
⊢ seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 104 |
1 103
|
eqtri |
⊢ 𝑆 = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 105 |
104
|
rneqi |
⊢ ran 𝑆 = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 106 |
105
|
supeq1i |
⊢ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) , ℝ* , < ) |
| 107 |
93
|
mpteq2dv |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) |
| 108 |
107
|
seqeq3d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) ) |
| 109 |
108
|
rneqd |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) ) |
| 110 |
109
|
supeq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 111 |
106 110
|
eqtrid |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 112 |
101 111
|
eqeq12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ↔ ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) ) |
| 113 |
99 112
|
imbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) ↔ ( ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) ) ) |
| 114 |
90 113 3
|
vtocl |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 115 |
67
|
iuneq2i |
⊢ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
| 116 |
115
|
fveq2i |
⊢ ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) |
| 117 |
69
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
| 118 |
|
seqeq3 |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) ) |
| 119 |
117 118
|
ax-mp |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) |
| 120 |
119
|
rneqi |
⊢ ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) |
| 121 |
120
|
supeq1i |
⊢ sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) |
| 122 |
114 116 121
|
3eqtr3g |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) ) |
| 123 |
83 88 122
|
sylancl |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) ) |
| 124 |
123
|
adantl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) ) |
| 125 |
84
|
iundisj |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
| 126 |
|
fofun |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → Fun 𝑔 ) |
| 127 |
|
funiunfv |
⊢ ( Fun 𝑔 → ∪ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝑔 “ ℕ ) ) |
| 128 |
126 127
|
syl |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝑔 “ ℕ ) ) |
| 129 |
125 128
|
eqtr3id |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) = ∪ ( 𝑔 “ ℕ ) ) |
| 130 |
32
|
unieqd |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ ( 𝑔 “ ℕ ) = ∪ 𝐴 ) |
| 131 |
129 130
|
eqtrd |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) = ∪ 𝐴 ) |
| 132 |
131
|
fveq2d |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol ‘ ∪ 𝐴 ) ) |
| 133 |
132
|
adantr |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol ‘ ∪ 𝐴 ) ) |
| 134 |
59
|
sseq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ↔ ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ) ) |
| 135 |
59
|
fveqeq2d |
⊢ ( 𝑚 = 𝑛 → ( ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ↔ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) ) |
| 136 |
134 135
|
anbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ↔ ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) ) ) |
| 137 |
136
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) ) |
| 138 |
|
ssdifss |
⊢ ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ) |
| 139 |
138
|
adantr |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ) |
| 140 |
|
difss |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ( 𝑔 ‘ 𝑛 ) |
| 141 |
|
ovolssnul |
⊢ ( ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
| 142 |
140 141
|
mp3an1 |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
| 143 |
139 142
|
jca |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) ) |
| 144 |
|
nulmbl |
⊢ ( ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ) |
| 145 |
|
mblvol |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
| 146 |
143 144 145
|
3syl |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
| 147 |
146 142
|
eqtrd |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
| 148 |
137 147
|
syl |
⊢ ( ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
| 149 |
148
|
mpteq2dva |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ 0 ) ) |
| 150 |
149
|
seqeq3d |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) ) |
| 151 |
150
|
rneqd |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) ) |
| 152 |
151
|
supeq1d |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) ) |
| 153 |
|
0cn |
⊢ 0 ∈ ℂ |
| 154 |
|
ser1const |
⊢ ( ( 0 ∈ ℂ ∧ 𝑚 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) = ( 𝑚 · 0 ) ) |
| 155 |
153 154
|
mpan |
⊢ ( 𝑚 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) = ( 𝑚 · 0 ) ) |
| 156 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 157 |
156
|
mul01d |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 · 0 ) = 0 ) |
| 158 |
155 157
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) = 0 ) |
| 159 |
158
|
mpteq2ia |
⊢ ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ 0 ) |
| 160 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑛 ∈ ℕ ↦ 0 ) |
| 161 |
|
seqeq3 |
⊢ ( ( ℕ × { 0 } ) = ( 𝑛 ∈ ℕ ↦ 0 ) → seq 1 ( + , ( ℕ × { 0 } ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) ) |
| 162 |
160 161
|
ax-mp |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) |
| 163 |
|
1z |
⊢ 1 ∈ ℤ |
| 164 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 165 |
163 164
|
ax-mp |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) |
| 166 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 167 |
166
|
fneq2i |
⊢ ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ℕ ↔ seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 168 |
|
dffn5 |
⊢ ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ℕ ↔ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) ) |
| 169 |
167 168
|
bitr3i |
⊢ ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) ↔ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) ) |
| 170 |
165 169
|
mpbi |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) |
| 171 |
162 170
|
eqtr3i |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) |
| 172 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 ) |
| 173 |
159 171 172
|
3eqtr4i |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = ( ℕ × { 0 } ) |
| 174 |
173
|
rneqi |
⊢ ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = ran ( ℕ × { 0 } ) |
| 175 |
|
1nn |
⊢ 1 ∈ ℕ |
| 176 |
|
ne0i |
⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) |
| 177 |
|
rnxp |
⊢ ( ℕ ≠ ∅ → ran ( ℕ × { 0 } ) = { 0 } ) |
| 178 |
175 176 177
|
mp2b |
⊢ ran ( ℕ × { 0 } ) = { 0 } |
| 179 |
174 178
|
eqtri |
⊢ ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = { 0 } |
| 180 |
179
|
supeq1i |
⊢ sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) |
| 181 |
|
xrltso |
⊢ < Or ℝ* |
| 182 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 183 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
| 184 |
181 182 183
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
| 185 |
180 184
|
eqtri |
⊢ sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) = 0 |
| 186 |
152 185
|
eqtrdi |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) = 0 ) |
| 187 |
186
|
adantl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) = 0 ) |
| 188 |
124 133 187
|
3eqtr3rd |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) |
| 189 |
188
|
ex |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
| 190 |
41 189
|
sylbid |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
| 191 |
31 190
|
syl5 |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
| 192 |
191
|
exlimiv |
⊢ ( ∃ 𝑔 𝑔 : ℕ –onto→ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
| 193 |
21 192
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
| 194 |
193
|
expimpd |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
| 195 |
14 194
|
pm2.61ine |
⊢ ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) |
| 196 |
|
renepnf |
⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) |
| 197 |
50 196
|
mp1i |
⊢ ( ∪ 𝐴 = ℝ → 0 ≠ +∞ ) |
| 198 |
|
fveq2 |
⊢ ( ∪ 𝐴 = ℝ → ( vol ‘ ∪ 𝐴 ) = ( vol ‘ ℝ ) ) |
| 199 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 200 |
|
mblvol |
⊢ ( ℝ ∈ dom vol → ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) ) |
| 201 |
199 200
|
ax-mp |
⊢ ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) |
| 202 |
|
ovolre |
⊢ ( vol* ‘ ℝ ) = +∞ |
| 203 |
201 202
|
eqtri |
⊢ ( vol ‘ ℝ ) = +∞ |
| 204 |
198 203
|
eqtrdi |
⊢ ( ∪ 𝐴 = ℝ → ( vol ‘ ∪ 𝐴 ) = +∞ ) |
| 205 |
197 204
|
neeqtrrd |
⊢ ( ∪ 𝐴 = ℝ → 0 ≠ ( vol ‘ ∪ 𝐴 ) ) |
| 206 |
205
|
necon2i |
⊢ ( 0 = ( vol ‘ ∪ 𝐴 ) → ∪ 𝐴 ≠ ℝ ) |
| 207 |
195 206
|
syl |
⊢ ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → ∪ 𝐴 ≠ ℝ ) |
| 208 |
207
|
expr |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ( ∪ 𝐴 ⊆ ℝ → ∪ 𝐴 ≠ ℝ ) ) |
| 209 |
|
eqimss |
⊢ ( ∪ 𝐴 = ℝ → ∪ 𝐴 ⊆ ℝ ) |
| 210 |
209
|
necon3bi |
⊢ ( ¬ ∪ 𝐴 ⊆ ℝ → ∪ 𝐴 ≠ ℝ ) |
| 211 |
208 210
|
pm2.61d1 |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ∪ 𝐴 ≠ ℝ ) |