Step |
Hyp |
Ref |
Expression |
1 |
|
voliunnfl.1 |
⊢ 𝑆 = seq 1 ( + , 𝐺 ) |
2 |
|
voliunnfl.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
3 |
|
voliunnfl.3 |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
4 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
5 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
7 |
6
|
fveq2d |
⊢ ( 𝐴 = ∅ → ( vol ‘ ∪ 𝐴 ) = ( vol ‘ ∅ ) ) |
8 |
|
0mbl |
⊢ ∅ ∈ dom vol |
9 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
10 |
8 9
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
11 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
12 |
10 11
|
eqtri |
⊢ ( vol ‘ ∅ ) = 0 |
13 |
7 12
|
eqtr2di |
⊢ ( 𝐴 = ∅ → 0 = ( vol ‘ ∪ 𝐴 ) ) |
14 |
13
|
a1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
15 |
|
reldom |
⊢ Rel ≼ |
16 |
15
|
brrelex1i |
⊢ ( 𝐴 ≼ ℕ → 𝐴 ∈ V ) |
17 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
18 |
16 17
|
syl |
⊢ ( 𝐴 ≼ ℕ → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
19 |
18
|
biimparc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∅ ≺ 𝐴 ) |
20 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝐴 ∧ 𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto→ 𝐴 ) |
21 |
19 20
|
sylancom |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto→ 𝐴 ) |
22 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ ℝ ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ) |
23 |
22
|
anbi1i |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ) |
24 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ) |
25 |
23 24
|
bitr4i |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ) |
26 |
|
ovolctb2 |
⊢ ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( vol* ‘ 𝑥 ) = 0 ) |
27 |
26
|
ex |
⊢ ( 𝑥 ⊆ ℝ → ( 𝑥 ≼ ℕ → ( vol* ‘ 𝑥 ) = 0 ) ) |
28 |
27
|
imdistani |
⊢ ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
29 |
28
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
30 |
25 29
|
sylbi |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
31 |
30
|
ancoms |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) |
32 |
|
foima |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( 𝑔 “ ℕ ) = 𝐴 ) |
33 |
32
|
raleqdv |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) ) |
34 |
|
fofn |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → 𝑔 Fn ℕ ) |
35 |
|
ssid |
⊢ ℕ ⊆ ℕ |
36 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑚 ) → ( 𝑥 ⊆ ℝ ↔ ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ) ) |
37 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑚 ) → ( ( vol* ‘ 𝑥 ) = 0 ↔ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) |
38 |
36 37
|
anbi12d |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑚 ) → ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) ) |
39 |
38
|
ralima |
⊢ ( ( 𝑔 Fn ℕ ∧ ℕ ⊆ ℕ ) → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) ) |
40 |
34 35 39
|
sylancl |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) ) |
41 |
33 40
|
bitr3d |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) ) |
42 |
|
difss |
⊢ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) |
43 |
|
ovolssnul |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ∧ ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
44 |
42 43
|
mp3an1 |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
45 |
|
ssdifss |
⊢ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ → ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ) |
46 |
|
nulmbl |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ) |
47 |
|
mblvol |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
48 |
47
|
eqeq1d |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ↔ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) ) |
49 |
48
|
biimpar |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
50 |
|
0re |
⊢ 0 ∈ ℝ |
51 |
49 50
|
eqeltrdi |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) |
52 |
51
|
expcom |
⊢ ( ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
53 |
52
|
ancld |
⊢ ( ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) ) |
54 |
53
|
adantl |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) ) |
55 |
46 54
|
mpd |
⊢ ( ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
56 |
45 55
|
sylan |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
57 |
44 56
|
syldan |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
58 |
57
|
ralimi |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ∀ 𝑚 ∈ ℕ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
59 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑔 ‘ 𝑚 ) = ( 𝑔 ‘ 𝑛 ) ) |
60 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 ..^ 𝑚 ) = ( 1 ..^ 𝑛 ) ) |
61 |
60
|
iuneq1d |
⊢ ( 𝑚 = 𝑛 → ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) = ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
62 |
59 61
|
difeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) |
63 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
64 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑛 ) ∈ V |
65 |
|
difexg |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∈ V → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ V ) |
66 |
64 65
|
ax-mp |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ V |
67 |
62 63 66
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) = ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) |
68 |
67
|
eleq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ↔ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ) ) |
69 |
67
|
fveq2d |
⊢ ( 𝑛 ∈ ℕ → ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
70 |
69
|
eleq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
71 |
68 70
|
anbi12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ↔ ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) ) |
72 |
71
|
ralbiia |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ↔ ∀ 𝑛 ∈ ℕ ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
73 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑚 ) ) |
74 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑚 ) ) |
75 |
74
|
iuneq1d |
⊢ ( 𝑛 = 𝑚 → ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) = ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) |
76 |
73 75
|
difeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) = ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
77 |
76
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ↔ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ) ) |
78 |
76
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
79 |
78
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
80 |
77 79
|
anbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ↔ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) ) |
81 |
80
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ↔ ∀ 𝑚 ∈ ℕ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
82 |
72 81
|
bitri |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ↔ ∀ 𝑚 ∈ ℕ ( ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ ℝ ) ) |
83 |
58 82
|
sylibr |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) |
84 |
|
fveq2 |
⊢ ( 𝑛 = 𝑙 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑙 ) ) |
85 |
84
|
iundisj2 |
⊢ Disj 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
86 |
|
disjeq2 |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) = ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) → ( Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
87 |
86 67
|
mprg |
⊢ ( Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) |
88 |
85 87
|
mpbir |
⊢ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) |
89 |
|
nnex |
⊢ ℕ ∈ V |
90 |
89
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∈ V |
91 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) |
92 |
91
|
eleq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ↔ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ) ) |
93 |
91
|
fveq2d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) |
94 |
93
|
eleq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) |
95 |
92 94
|
anbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ↔ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) ) |
96 |
95
|
ralbidv |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ↔ ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) ) |
97 |
91
|
adantr |
⊢ ( ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) |
98 |
97
|
disjeq2dv |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) |
99 |
96 98
|
anbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) |
100 |
91
|
iuneq2d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) |
101 |
100
|
fveq2d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) |
102 |
|
seqeq3 |
⊢ ( 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
103 |
2 102
|
ax-mp |
⊢ seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
104 |
1 103
|
eqtri |
⊢ 𝑆 = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
105 |
104
|
rneqi |
⊢ ran 𝑆 = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
106 |
105
|
supeq1i |
⊢ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) , ℝ* , < ) |
107 |
93
|
mpteq2dv |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) |
108 |
107
|
seqeq3d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) ) |
109 |
108
|
rneqd |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) ) |
110 |
109
|
supeq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
111 |
106 110
|
eqtrid |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
112 |
101 111
|
eqeq12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ↔ ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) ) |
113 |
99 112
|
imbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) → ( ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) ↔ ( ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) ) ) |
114 |
90 113 3
|
vtocl |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
115 |
67
|
iuneq2i |
⊢ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
116 |
115
|
fveq2i |
⊢ ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) = ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) |
117 |
69
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
118 |
|
seqeq3 |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) ) |
119 |
117 118
|
ax-mp |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) |
120 |
119
|
rneqi |
⊢ ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) |
121 |
120
|
supeq1i |
⊢ sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) |
122 |
114 116 121
|
3eqtr3g |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) ) |
123 |
83 88 122
|
sylancl |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) ) |
124 |
123
|
adantl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) ) |
125 |
84
|
iundisj |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
126 |
|
fofun |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → Fun 𝑔 ) |
127 |
|
funiunfv |
⊢ ( Fun 𝑔 → ∪ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝑔 “ ℕ ) ) |
128 |
126 127
|
syl |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝑔 “ ℕ ) ) |
129 |
125 128
|
eqtr3id |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) = ∪ ( 𝑔 “ ℕ ) ) |
130 |
32
|
unieqd |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ ( 𝑔 “ ℕ ) = ∪ 𝐴 ) |
131 |
129 130
|
eqtrd |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) = ∪ 𝐴 ) |
132 |
131
|
fveq2d |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol ‘ ∪ 𝐴 ) ) |
133 |
132
|
adantr |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol ‘ ∪ 𝐴 ) ) |
134 |
59
|
sseq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ↔ ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ) ) |
135 |
59
|
fveqeq2d |
⊢ ( 𝑚 = 𝑛 → ( ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ↔ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) ) |
136 |
134 135
|
anbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ↔ ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) ) ) |
137 |
136
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) ) |
138 |
|
ssdifss |
⊢ ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ) |
139 |
138
|
adantr |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ) |
140 |
|
difss |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ( 𝑔 ‘ 𝑛 ) |
141 |
|
ovolssnul |
⊢ ( ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
142 |
140 141
|
mp3an1 |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
143 |
139 142
|
jca |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) ) |
144 |
|
nulmbl |
⊢ ( ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) → ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol ) |
145 |
|
mblvol |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ∈ dom vol → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
146 |
143 144 145
|
3syl |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol* ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
147 |
146 142
|
eqtrd |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑛 ) ) = 0 ) → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
148 |
137 147
|
syl |
⊢ ( ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) = 0 ) |
149 |
148
|
mpteq2dva |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ 0 ) ) |
150 |
149
|
seqeq3d |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) ) |
151 |
150
|
rneqd |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) ) |
152 |
151
|
supeq1d |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) ) |
153 |
|
0cn |
⊢ 0 ∈ ℂ |
154 |
|
ser1const |
⊢ ( ( 0 ∈ ℂ ∧ 𝑚 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) = ( 𝑚 · 0 ) ) |
155 |
153 154
|
mpan |
⊢ ( 𝑚 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) = ( 𝑚 · 0 ) ) |
156 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
157 |
156
|
mul01d |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 · 0 ) = 0 ) |
158 |
155 157
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) = 0 ) |
159 |
158
|
mpteq2ia |
⊢ ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ 0 ) |
160 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑛 ∈ ℕ ↦ 0 ) |
161 |
|
seqeq3 |
⊢ ( ( ℕ × { 0 } ) = ( 𝑛 ∈ ℕ ↦ 0 ) → seq 1 ( + , ( ℕ × { 0 } ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) ) |
162 |
160 161
|
ax-mp |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) |
163 |
|
1z |
⊢ 1 ∈ ℤ |
164 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) ) |
165 |
163 164
|
ax-mp |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) |
166 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
167 |
166
|
fneq2i |
⊢ ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ℕ ↔ seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) ) |
168 |
|
dffn5 |
⊢ ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ℕ ↔ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) ) |
169 |
167 168
|
bitr3i |
⊢ ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ≥ ‘ 1 ) ↔ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) ) |
170 |
165 169
|
mpbi |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) |
171 |
162 170
|
eqtr3i |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) |
172 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 ) |
173 |
159 171 172
|
3eqtr4i |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = ( ℕ × { 0 } ) |
174 |
173
|
rneqi |
⊢ ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = ran ( ℕ × { 0 } ) |
175 |
|
1nn |
⊢ 1 ∈ ℕ |
176 |
|
ne0i |
⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) |
177 |
|
rnxp |
⊢ ( ℕ ≠ ∅ → ran ( ℕ × { 0 } ) = { 0 } ) |
178 |
175 176 177
|
mp2b |
⊢ ran ( ℕ × { 0 } ) = { 0 } |
179 |
174 178
|
eqtri |
⊢ ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = { 0 } |
180 |
179
|
supeq1i |
⊢ sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) |
181 |
|
xrltso |
⊢ < Or ℝ* |
182 |
|
0xr |
⊢ 0 ∈ ℝ* |
183 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
184 |
181 182 183
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
185 |
180 184
|
eqtri |
⊢ sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) = 0 |
186 |
152 185
|
eqtrdi |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) = 0 ) |
187 |
186
|
adantl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔 ‘ 𝑛 ) ∖ ∪ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) , ℝ* , < ) = 0 ) |
188 |
124 133 187
|
3eqtr3rd |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) |
189 |
188
|
ex |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑚 ∈ ℕ ( ( 𝑔 ‘ 𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑚 ) ) = 0 ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
190 |
41 189
|
sylbid |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
191 |
31 190
|
syl5 |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
192 |
191
|
exlimiv |
⊢ ( ∃ 𝑔 𝑔 : ℕ –onto→ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
193 |
21 192
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
194 |
193
|
expimpd |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
195 |
14 194
|
pm2.61ine |
⊢ ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) |
196 |
|
renepnf |
⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) |
197 |
50 196
|
mp1i |
⊢ ( ∪ 𝐴 = ℝ → 0 ≠ +∞ ) |
198 |
|
fveq2 |
⊢ ( ∪ 𝐴 = ℝ → ( vol ‘ ∪ 𝐴 ) = ( vol ‘ ℝ ) ) |
199 |
|
rembl |
⊢ ℝ ∈ dom vol |
200 |
|
mblvol |
⊢ ( ℝ ∈ dom vol → ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) ) |
201 |
199 200
|
ax-mp |
⊢ ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) |
202 |
|
ovolre |
⊢ ( vol* ‘ ℝ ) = +∞ |
203 |
201 202
|
eqtri |
⊢ ( vol ‘ ℝ ) = +∞ |
204 |
198 203
|
eqtrdi |
⊢ ( ∪ 𝐴 = ℝ → ( vol ‘ ∪ 𝐴 ) = +∞ ) |
205 |
197 204
|
neeqtrrd |
⊢ ( ∪ 𝐴 = ℝ → 0 ≠ ( vol ‘ ∪ 𝐴 ) ) |
206 |
205
|
necon2i |
⊢ ( 0 = ( vol ‘ ∪ 𝐴 ) → ∪ 𝐴 ≠ ℝ ) |
207 |
195 206
|
syl |
⊢ ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → ∪ 𝐴 ≠ ℝ ) |
208 |
207
|
expr |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ( ∪ 𝐴 ⊆ ℝ → ∪ 𝐴 ≠ ℝ ) ) |
209 |
|
eqimss |
⊢ ( ∪ 𝐴 = ℝ → ∪ 𝐴 ⊆ ℝ ) |
210 |
209
|
necon3bi |
⊢ ( ¬ ∪ 𝐴 ⊆ ℝ → ∪ 𝐴 ≠ ℝ ) |
211 |
208 210
|
pm2.61d1 |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ∪ 𝐴 ≠ ℝ ) |