Metamath Proof Explorer


Theorem voliunnfl

Description: voliun is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017)

Ref Expression
Hypotheses voliunnfl.1 𝑆 = seq 1 ( + , 𝐺 )
voliunnfl.2 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) )
voliunnfl.3 ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) )
Assertion voliunnfl ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → 𝐴 ≠ ℝ )

Proof

Step Hyp Ref Expression
1 voliunnfl.1 𝑆 = seq 1 ( + , 𝐺 )
2 voliunnfl.2 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) )
3 voliunnfl.3 ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) )
4 unieq ( 𝐴 = ∅ → 𝐴 = ∅ )
5 uni0 ∅ = ∅
6 4 5 eqtrdi ( 𝐴 = ∅ → 𝐴 = ∅ )
7 6 fveq2d ( 𝐴 = ∅ → ( vol ‘ 𝐴 ) = ( vol ‘ ∅ ) )
8 0mbl ∅ ∈ dom vol
9 mblvol ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) )
10 8 9 ax-mp ( vol ‘ ∅ ) = ( vol* ‘ ∅ )
11 ovol0 ( vol* ‘ ∅ ) = 0
12 10 11 eqtri ( vol ‘ ∅ ) = 0
13 7 12 eqtr2di ( 𝐴 = ∅ → 0 = ( vol ‘ 𝐴 ) )
14 13 a1d ( 𝐴 = ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ 𝐴 ) ) )
15 reldom Rel ≼
16 15 brrelex1i ( 𝐴 ≼ ℕ → 𝐴 ∈ V )
17 0sdomg ( 𝐴 ∈ V → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
18 16 17 syl ( 𝐴 ≼ ℕ → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
19 18 biimparc ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∅ ≺ 𝐴 )
20 fodomr ( ( ∅ ≺ 𝐴𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto𝐴 )
21 19 20 sylancom ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto𝐴 )
22 unissb ( 𝐴 ⊆ ℝ ↔ ∀ 𝑥𝐴 𝑥 ⊆ ℝ )
23 22 anbi1i ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) )
24 r19.26 ( ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) )
25 23 24 bitr4i ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) ↔ ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) )
26 ovolctb2 ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( vol* ‘ 𝑥 ) = 0 )
27 26 ex ( 𝑥 ⊆ ℝ → ( 𝑥 ≼ ℕ → ( vol* ‘ 𝑥 ) = 0 ) )
28 27 imdistani ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) )
29 28 ralimi ( ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) )
30 25 29 sylbi ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) )
31 30 ancoms ( ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) → ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) )
32 foima ( 𝑔 : ℕ –onto𝐴 → ( 𝑔 “ ℕ ) = 𝐴 )
33 32 raleqdv ( 𝑔 : ℕ –onto𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ) )
34 fofn ( 𝑔 : ℕ –onto𝐴𝑔 Fn ℕ )
35 ssid ℕ ⊆ ℕ
36 sseq1 ( 𝑥 = ( 𝑔𝑚 ) → ( 𝑥 ⊆ ℝ ↔ ( 𝑔𝑚 ) ⊆ ℝ ) )
37 fveqeq2 ( 𝑥 = ( 𝑔𝑚 ) → ( ( vol* ‘ 𝑥 ) = 0 ↔ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) )
38 36 37 anbi12d ( 𝑥 = ( 𝑔𝑚 ) → ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ) )
39 38 ralima ( ( 𝑔 Fn ℕ ∧ ℕ ⊆ ℕ ) → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ) )
40 34 35 39 sylancl ( 𝑔 : ℕ –onto𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ) )
41 33 40 bitr3d ( 𝑔 : ℕ –onto𝐴 → ( ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ) )
42 difss ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ⊆ ( 𝑔𝑚 )
43 ovolssnul ( ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ⊆ ( 𝑔𝑚 ) ∧ ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 )
44 42 43 mp3an1 ( ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 )
45 ssdifss ( ( 𝑔𝑚 ) ⊆ ℝ → ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ⊆ ℝ )
46 nulmbl ( ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 ) → ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol )
47 mblvol ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol → ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) )
48 47 eqeq1d ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol → ( ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 ↔ ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 ) )
49 48 biimpar ( ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 ) → ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 )
50 0re 0 ∈ ℝ
51 49 50 eqeltrdi ( ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 ) → ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ )
52 51 expcom ( ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 → ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol → ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
53 52 ancld ( ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 → ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol → ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) ) )
54 53 adantl ( ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 ) → ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol → ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) ) )
55 46 54 mpd ( ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 ) → ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
56 45 55 sylan ( ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = 0 ) → ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
57 44 56 syldan ( ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
58 57 ralimi ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → ∀ 𝑚 ∈ ℕ ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
59 fveq2 ( 𝑚 = 𝑛 → ( 𝑔𝑚 ) = ( 𝑔𝑛 ) )
60 oveq2 ( 𝑚 = 𝑛 → ( 1 ..^ 𝑚 ) = ( 1 ..^ 𝑛 ) )
61 60 iuneq1d ( 𝑚 = 𝑛 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) = 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) )
62 59 61 difeq12d ( 𝑚 = 𝑛 → ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) = ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) )
63 eqid ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) )
64 fvex ( 𝑔𝑛 ) ∈ V
65 difexg ( ( 𝑔𝑛 ) ∈ V → ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ V )
66 64 65 ax-mp ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ V
67 62 63 66 fvmpt ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) = ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) )
68 67 eleq1d ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ↔ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ dom vol ) )
69 67 fveq2d ( 𝑛 ∈ ℕ → ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) )
70 69 eleq1d ( 𝑛 ∈ ℕ → ( ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
71 68 70 anbi12d ( 𝑛 ∈ ℕ → ( ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ↔ ( ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) ) )
72 71 ralbiia ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ↔ ∀ 𝑛 ∈ ℕ ( ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
73 fveq2 ( 𝑛 = 𝑚 → ( 𝑔𝑛 ) = ( 𝑔𝑚 ) )
74 oveq2 ( 𝑛 = 𝑚 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑚 ) )
75 74 iuneq1d ( 𝑛 = 𝑚 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) = 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) )
76 73 75 difeq12d ( 𝑛 = 𝑚 → ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) = ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) )
77 76 eleq1d ( 𝑛 = 𝑚 → ( ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ dom vol ↔ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ) )
78 76 fveq2d ( 𝑛 = 𝑚 → ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) )
79 78 eleq1d ( 𝑛 = 𝑚 → ( ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
80 77 79 anbi12d ( 𝑛 = 𝑚 → ( ( ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) ↔ ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) ) )
81 80 cbvralvw ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) ↔ ∀ 𝑚 ∈ ℕ ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
82 72 81 bitri ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ↔ ∀ 𝑚 ∈ ℕ ( ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ ℝ ) )
83 58 82 sylibr ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) )
84 fveq2 ( 𝑛 = 𝑙 → ( 𝑔𝑛 ) = ( 𝑔𝑙 ) )
85 84 iundisj2 Disj 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) )
86 disjeq2 ( ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) = ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) → ( Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) )
87 86 67 mprg ( Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) )
88 85 87 mpbir Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 )
89 nnex ℕ ∈ V
90 89 mptex ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∈ V
91 fveq1 ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( 𝑓𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) )
92 91 eleq1d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( ( 𝑓𝑛 ) ∈ dom vol ↔ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ) )
93 91 fveq2d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( vol ‘ ( 𝑓𝑛 ) ) = ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) )
94 93 eleq1d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( ( vol ‘ ( 𝑓𝑛 ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) )
95 92 94 anbi12d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( ( ( 𝑓𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ↔ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) )
96 95 ralbidv ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ↔ ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ) )
97 91 adantr ( ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) )
98 97 disjeq2dv ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( Disj 𝑛 ∈ ℕ ( 𝑓𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) )
99 96 98 anbi12d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) )
100 91 iuneq2d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → 𝑛 ∈ ℕ ( 𝑓𝑛 ) = 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) )
101 100 fveq2d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( vol ‘ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) = ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) )
102 seqeq3 ( 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) ) )
103 2 102 ax-mp seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) )
104 1 103 eqtri 𝑆 = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) )
105 104 rneqi ran 𝑆 = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) )
106 105 supeq1i sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) ) , ℝ* , < )
107 93 mpteq2dv ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) )
108 107 seqeq3d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) )
109 108 rneqd ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) ) = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) )
110 109 supeq1d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑓𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) )
111 106 110 syl5eq ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) )
112 101 111 eqeq12d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( ( vol ‘ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ↔ ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) )
113 99 112 imbi12d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) → ( ( ( ∀ 𝑛 ∈ ℕ ( ( 𝑓𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝑓𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) ↔ ( ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) ) )
114 90 113 3 vtocl ( ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) )
115 67 iuneq2i 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) = 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) )
116 115 fveq2i ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) = ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) )
117 69 mpteq2ia ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) )
118 seqeq3 ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) )
119 117 118 ax-mp seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) )
120 119 rneqi ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) )
121 120 supeq1i sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) , ℝ* , < )
122 114 116 121 3eqtr3g ( ( ∀ 𝑛 ∈ ℕ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑔𝑚 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑚 ) ( 𝑔𝑙 ) ) ) ‘ 𝑛 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) , ℝ* , < ) )
123 83 88 122 sylancl ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) , ℝ* , < ) )
124 123 adantl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) , ℝ* , < ) )
125 84 iundisj 𝑛 ∈ ℕ ( 𝑔𝑛 ) = 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) )
126 fofun ( 𝑔 : ℕ –onto𝐴 → Fun 𝑔 )
127 funiunfv ( Fun 𝑔 𝑛 ∈ ℕ ( 𝑔𝑛 ) = ( 𝑔 “ ℕ ) )
128 126 127 syl ( 𝑔 : ℕ –onto𝐴 𝑛 ∈ ℕ ( 𝑔𝑛 ) = ( 𝑔 “ ℕ ) )
129 125 128 eqtr3id ( 𝑔 : ℕ –onto𝐴 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) = ( 𝑔 “ ℕ ) )
130 32 unieqd ( 𝑔 : ℕ –onto𝐴 ( 𝑔 “ ℕ ) = 𝐴 )
131 129 130 eqtrd ( 𝑔 : ℕ –onto𝐴 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) = 𝐴 )
132 131 fveq2d ( 𝑔 : ℕ –onto𝐴 → ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = ( vol ‘ 𝐴 ) )
133 132 adantr ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = ( vol ‘ 𝐴 ) )
134 59 sseq1d ( 𝑚 = 𝑛 → ( ( 𝑔𝑚 ) ⊆ ℝ ↔ ( 𝑔𝑛 ) ⊆ ℝ ) )
135 59 fveqeq2d ( 𝑚 = 𝑛 → ( ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ↔ ( vol* ‘ ( 𝑔𝑛 ) ) = 0 ) )
136 134 135 anbi12d ( 𝑚 = 𝑛 → ( ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ↔ ( ( 𝑔𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑛 ) ) = 0 ) ) )
137 136 rspccva ( ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑔𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑛 ) ) = 0 ) )
138 ssdifss ( ( 𝑔𝑛 ) ⊆ ℝ → ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ⊆ ℝ )
139 138 adantr ( ( ( 𝑔𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑛 ) ) = 0 ) → ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ⊆ ℝ )
140 difss ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ⊆ ( 𝑔𝑛 )
141 ovolssnul ( ( ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ⊆ ( 𝑔𝑛 ) ∧ ( 𝑔𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑛 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = 0 )
142 140 141 mp3an1 ( ( ( 𝑔𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑛 ) ) = 0 ) → ( vol* ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = 0 )
143 139 142 jca ( ( ( 𝑔𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑛 ) ) = 0 ) → ( ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = 0 ) )
144 nulmbl ( ( ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = 0 ) → ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ dom vol )
145 mblvol ( ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ∈ dom vol → ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = ( vol* ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) )
146 143 144 145 3syl ( ( ( 𝑔𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑛 ) ) = 0 ) → ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = ( vol* ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) )
147 146 142 eqtrd ( ( ( 𝑔𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑛 ) ) = 0 ) → ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = 0 )
148 137 147 syl ( ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) = 0 )
149 148 mpteq2dva ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ 0 ) )
150 149 seqeq3d ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) )
151 150 rneqd ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) )
152 151 supeq1d ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) )
153 0cn 0 ∈ ℂ
154 ser1const ( ( 0 ∈ ℂ ∧ 𝑚 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) = ( 𝑚 · 0 ) )
155 153 154 mpan ( 𝑚 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) = ( 𝑚 · 0 ) )
156 nncn ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ )
157 156 mul01d ( 𝑚 ∈ ℕ → ( 𝑚 · 0 ) = 0 )
158 155 157 eqtrd ( 𝑚 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) = 0 )
159 158 mpteq2ia ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ 0 )
160 fconstmpt ( ℕ × { 0 } ) = ( 𝑛 ∈ ℕ ↦ 0 )
161 seqeq3 ( ( ℕ × { 0 } ) = ( 𝑛 ∈ ℕ ↦ 0 ) → seq 1 ( + , ( ℕ × { 0 } ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) )
162 160 161 ax-mp seq 1 ( + , ( ℕ × { 0 } ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) )
163 1z 1 ∈ ℤ
164 seqfn ( 1 ∈ ℤ → seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ ‘ 1 ) )
165 163 164 ax-mp seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ ‘ 1 )
166 nnuz ℕ = ( ℤ ‘ 1 )
167 166 fneq2i ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ℕ ↔ seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ ‘ 1 ) )
168 dffn5 ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ℕ ↔ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) )
169 167 168 bitr3i ( seq 1 ( + , ( ℕ × { 0 } ) ) Fn ( ℤ ‘ 1 ) ↔ seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) ) )
170 165 169 mpbi seq 1 ( + , ( ℕ × { 0 } ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) )
171 162 170 eqtr3i seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ 𝑚 ) )
172 fconstmpt ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 )
173 159 171 172 3eqtr4i seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = ( ℕ × { 0 } )
174 173 rneqi ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = ran ( ℕ × { 0 } )
175 1nn 1 ∈ ℕ
176 ne0i ( 1 ∈ ℕ → ℕ ≠ ∅ )
177 rnxp ( ℕ ≠ ∅ → ran ( ℕ × { 0 } ) = { 0 } )
178 175 176 177 mp2b ran ( ℕ × { 0 } ) = { 0 }
179 174 178 eqtri ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) = { 0 }
180 179 supeq1i sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < )
181 xrltso < Or ℝ*
182 0xr 0 ∈ ℝ*
183 supsn ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 )
184 181 182 183 mp2an sup ( { 0 } , ℝ* , < ) = 0
185 180 184 eqtri sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 0 ) ) , ℝ* , < ) = 0
186 152 185 eqtrdi ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) , ℝ* , < ) = 0 )
187 186 adantl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ) → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑔𝑛 ) ∖ 𝑙 ∈ ( 1 ..^ 𝑛 ) ( 𝑔𝑙 ) ) ) ) ) , ℝ* , < ) = 0 )
188 124 133 187 3eqtr3rd ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) ) → 0 = ( vol ‘ 𝐴 ) )
189 188 ex ( 𝑔 : ℕ –onto𝐴 → ( ∀ 𝑚 ∈ ℕ ( ( 𝑔𝑚 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑚 ) ) = 0 ) → 0 = ( vol ‘ 𝐴 ) ) )
190 41 189 sylbid ( 𝑔 : ℕ –onto𝐴 → ( ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → 0 = ( vol ‘ 𝐴 ) ) )
191 31 190 syl5 ( 𝑔 : ℕ –onto𝐴 → ( ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ 𝐴 ) ) )
192 191 exlimiv ( ∃ 𝑔 𝑔 : ℕ –onto𝐴 → ( ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ 𝐴 ) ) )
193 21 192 syl ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ( ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ 𝐴 ) ) )
194 193 expimpd ( 𝐴 ≠ ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ 𝐴 ) ) )
195 14 194 pm2.61ine ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ 𝐴 ) )
196 renepnf ( 0 ∈ ℝ → 0 ≠ +∞ )
197 50 196 mp1i ( 𝐴 = ℝ → 0 ≠ +∞ )
198 fveq2 ( 𝐴 = ℝ → ( vol ‘ 𝐴 ) = ( vol ‘ ℝ ) )
199 rembl ℝ ∈ dom vol
200 mblvol ( ℝ ∈ dom vol → ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) )
201 199 200 ax-mp ( vol ‘ ℝ ) = ( vol* ‘ ℝ )
202 ovolre ( vol* ‘ ℝ ) = +∞
203 201 202 eqtri ( vol ‘ ℝ ) = +∞
204 198 203 eqtrdi ( 𝐴 = ℝ → ( vol ‘ 𝐴 ) = +∞ )
205 197 204 neeqtrrd ( 𝐴 = ℝ → 0 ≠ ( vol ‘ 𝐴 ) )
206 205 necon2i ( 0 = ( vol ‘ 𝐴 ) → 𝐴 ≠ ℝ )
207 195 206 syl ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) ) → 𝐴 ≠ ℝ )
208 207 expr ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ ) )
209 eqimss ( 𝐴 = ℝ → 𝐴 ⊆ ℝ )
210 209 necon3bi ( ¬ 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ )
211 208 210 pm2.61d1 ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → 𝐴 ≠ ℝ )