Step |
Hyp |
Ref |
Expression |
1 |
|
volsupnfl.0 |
⊢ ( ( 𝑓 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ∪ ran 𝑓 ) = sup ( ( vol “ ran 𝑓 ) , ℝ* , < ) ) |
2 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
3 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
4 |
2 3
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
5 |
4
|
fveq2d |
⊢ ( 𝐴 = ∅ → ( vol ‘ ∪ 𝐴 ) = ( vol ‘ ∅ ) ) |
6 |
|
0mbl |
⊢ ∅ ∈ dom vol |
7 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
8 |
6 7
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
9 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
10 |
8 9
|
eqtri |
⊢ ( vol ‘ ∅ ) = 0 |
11 |
5 10
|
eqtr2di |
⊢ ( 𝐴 = ∅ → 0 = ( vol ‘ ∪ 𝐴 ) ) |
12 |
11
|
a1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
13 |
|
reldom |
⊢ Rel ≼ |
14 |
13
|
brrelex1i |
⊢ ( 𝐴 ≼ ℕ → 𝐴 ∈ V ) |
15 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
16 |
14 15
|
syl |
⊢ ( 𝐴 ≼ ℕ → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
17 |
16
|
biimparc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∅ ≺ 𝐴 ) |
18 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝐴 ∧ 𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto→ 𝐴 ) |
19 |
17 18
|
sylancom |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto→ 𝐴 ) |
20 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ ℝ ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ) |
21 |
20
|
anbi1i |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ) |
22 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ) |
23 |
21 22
|
bitr4i |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ) |
24 |
|
ovolctb2 |
⊢ ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( vol* ‘ 𝑥 ) = 0 ) |
25 |
|
nulmbl |
⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → 𝑥 ∈ dom vol ) |
26 |
|
mblvol |
⊢ ( 𝑥 ∈ dom vol → ( vol ‘ 𝑥 ) = ( vol* ‘ 𝑥 ) ) |
27 |
|
eqtr |
⊢ ( ( ( vol ‘ 𝑥 ) = ( vol* ‘ 𝑥 ) ∧ ( vol* ‘ 𝑥 ) = 0 ) → ( vol ‘ 𝑥 ) = 0 ) |
28 |
27
|
expcom |
⊢ ( ( vol* ‘ 𝑥 ) = 0 → ( ( vol ‘ 𝑥 ) = ( vol* ‘ 𝑥 ) → ( vol ‘ 𝑥 ) = 0 ) ) |
29 |
26 28
|
syl5 |
⊢ ( ( vol* ‘ 𝑥 ) = 0 → ( 𝑥 ∈ dom vol → ( vol ‘ 𝑥 ) = 0 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → ( 𝑥 ∈ dom vol → ( vol ‘ 𝑥 ) = 0 ) ) |
31 |
25 30
|
jcai |
⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) |
32 |
24 31
|
syldan |
⊢ ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) |
33 |
32
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) |
34 |
23 33
|
sylbi |
⊢ ( ( ∪ 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) |
35 |
34
|
ancoms |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) |
36 |
|
fzfi |
⊢ ( 1 ... 𝑚 ) ∈ Fin |
37 |
|
fzssuz |
⊢ ( 1 ... 𝑚 ) ⊆ ( ℤ≥ ‘ 1 ) |
38 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
39 |
37 38
|
sseqtrri |
⊢ ( 1 ... 𝑚 ) ⊆ ℕ |
40 |
|
fof |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → 𝑔 : ℕ ⟶ 𝐴 ) |
41 |
40
|
ffvelrnda |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ 𝑙 ∈ ℕ ) → ( 𝑔 ‘ 𝑙 ) ∈ 𝐴 ) |
42 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑙 ) → ( 𝑥 ∈ dom vol ↔ ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) ) |
43 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑙 ) → ( ( vol ‘ 𝑥 ) = 0 ↔ ( vol ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) ) |
44 |
42 43
|
anbi12d |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑙 ) → ( ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑔 ‘ 𝑙 ) ∈ dom vol ∧ ( vol ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) ) ) |
45 |
44
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ∧ ( 𝑔 ‘ 𝑙 ) ∈ 𝐴 ) → ( ( 𝑔 ‘ 𝑙 ) ∈ dom vol ∧ ( vol ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) ) |
46 |
45
|
simpld |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ∧ ( 𝑔 ‘ 𝑙 ) ∈ 𝐴 ) → ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) |
47 |
46
|
ancoms |
⊢ ( ( ( 𝑔 ‘ 𝑙 ) ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) |
48 |
41 47
|
sylan |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ 𝑙 ∈ ℕ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) |
49 |
48
|
an32s |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑙 ∈ ℕ ) → ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) |
50 |
49
|
ralrimiva |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ℕ ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) |
51 |
|
ssralv |
⊢ ( ( 1 ... 𝑚 ) ⊆ ℕ → ( ∀ 𝑙 ∈ ℕ ( 𝑔 ‘ 𝑙 ) ∈ dom vol → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) ) |
52 |
39 50 51
|
mpsyl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) |
53 |
|
finiunmbl |
⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) → ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) |
54 |
36 52 53
|
sylancr |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) |
55 |
54
|
adantr |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ∈ dom vol ) |
56 |
55
|
fmpttd |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) : ℕ ⟶ dom vol ) |
57 |
|
fzssp1 |
⊢ ( 1 ... 𝑛 ) ⊆ ( 1 ... ( 𝑛 + 1 ) ) |
58 |
|
iunss1 |
⊢ ( ( 1 ... 𝑛 ) ⊆ ( 1 ... ( 𝑛 + 1 ) ) → ∪ 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔 ‘ 𝑙 ) ⊆ ∪ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔 ‘ 𝑙 ) ) |
59 |
57 58
|
ax-mp |
⊢ ∪ 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔 ‘ 𝑙 ) ⊆ ∪ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔 ‘ 𝑙 ) |
60 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) ) |
61 |
60
|
iuneq1d |
⊢ ( 𝑚 = 𝑛 → ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) = ∪ 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
62 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) |
63 |
|
ovex |
⊢ ( 1 ... 𝑛 ) ∈ V |
64 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑙 ) ∈ V |
65 |
63 64
|
iunex |
⊢ ∪ 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔 ‘ 𝑙 ) ∈ V |
66 |
61 62 65
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) = ∪ 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔 ‘ 𝑙 ) ) |
67 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
68 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 1 ... 𝑚 ) = ( 1 ... ( 𝑛 + 1 ) ) ) |
69 |
68
|
iuneq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) = ∪ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔 ‘ 𝑙 ) ) |
70 |
|
ovex |
⊢ ( 1 ... ( 𝑛 + 1 ) ) ∈ V |
71 |
70 64
|
iunex |
⊢ ∪ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔 ‘ 𝑙 ) ∈ V |
72 |
69 62 71
|
fvmpt |
⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) = ∪ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔 ‘ 𝑙 ) ) |
73 |
67 72
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) = ∪ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔 ‘ 𝑙 ) ) |
74 |
66 73
|
sseq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ↔ ∪ 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔 ‘ 𝑙 ) ⊆ ∪ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔 ‘ 𝑙 ) ) ) |
75 |
59 74
|
mpbiri |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) |
76 |
75
|
rgen |
⊢ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) |
77 |
|
nnex |
⊢ ℕ ∈ V |
78 |
77
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ V |
79 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( 𝑓 : ℕ ⟶ dom vol ↔ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) : ℕ ⟶ dom vol ) ) |
80 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( 𝑓 ‘ 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) ) |
81 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( 𝑓 ‘ ( 𝑛 + 1 ) ) = ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) |
82 |
80 81
|
sseq12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( ( 𝑓 ‘ 𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ↔ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
83 |
82
|
ralbidv |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
84 |
79 83
|
anbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( ( 𝑓 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
85 |
|
rneq |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ran 𝑓 = ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
86 |
85
|
unieqd |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ∪ ran 𝑓 = ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
87 |
86
|
fveq2d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( vol ‘ ∪ ran 𝑓 ) = ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
88 |
85
|
imaeq2d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( vol “ ran 𝑓 ) = ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
89 |
88
|
supeq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → sup ( ( vol “ ran 𝑓 ) , ℝ* , < ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) , ℝ* , < ) ) |
90 |
87 89
|
eqeq12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( ( vol ‘ ∪ ran 𝑓 ) = sup ( ( vol “ ran 𝑓 ) , ℝ* , < ) ↔ ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) , ℝ* , < ) ) ) |
91 |
84 90
|
imbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) → ( ( ( 𝑓 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ∪ ran 𝑓 ) = sup ( ( vol “ ran 𝑓 ) , ℝ* , < ) ) ↔ ( ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) , ℝ* , < ) ) ) ) |
92 |
78 91 1
|
vtocl |
⊢ ( ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) , ℝ* , < ) ) |
93 |
56 76 92
|
sylancl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) , ℝ* , < ) ) |
94 |
|
df-iun |
⊢ ∪ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = { 𝑛 ∣ ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) } |
95 |
|
eluzfz2 |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) → 𝑥 ∈ ( 1 ... 𝑥 ) ) |
96 |
95 38
|
eleq2s |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ( 1 ... 𝑥 ) ) |
97 |
|
fveq2 |
⊢ ( 𝑙 = 𝑥 → ( 𝑔 ‘ 𝑙 ) = ( 𝑔 ‘ 𝑥 ) ) |
98 |
97
|
eleq2d |
⊢ ( 𝑙 = 𝑥 → ( 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ↔ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
99 |
98
|
rspcev |
⊢ ( ( 𝑥 ∈ ( 1 ... 𝑥 ) ∧ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) ) → ∃ 𝑙 ∈ ( 1 ... 𝑥 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) |
100 |
96 99
|
sylan |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) ) → ∃ 𝑙 ∈ ( 1 ... 𝑥 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) |
101 |
|
oveq2 |
⊢ ( 𝑚 = 𝑥 → ( 1 ... 𝑚 ) = ( 1 ... 𝑥 ) ) |
102 |
101
|
rexeqdv |
⊢ ( 𝑚 = 𝑥 → ( ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ↔ ∃ 𝑙 ∈ ( 1 ... 𝑥 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) ) |
103 |
102
|
rspcev |
⊢ ( ( 𝑥 ∈ ℕ ∧ ∃ 𝑙 ∈ ( 1 ... 𝑥 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) → ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) |
104 |
100 103
|
syldan |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) |
105 |
104
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) → ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) |
106 |
|
ssrexv |
⊢ ( ( 1 ... 𝑚 ) ⊆ ℕ → ( ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) → ∃ 𝑙 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) ) |
107 |
39 106
|
ax-mp |
⊢ ( ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) → ∃ 𝑙 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) |
108 |
98
|
cbvrexvw |
⊢ ( ∃ 𝑙 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ↔ ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) ) |
109 |
107 108
|
sylib |
⊢ ( ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) → ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) ) |
110 |
109
|
rexlimivw |
⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) → ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) ) |
111 |
105 110
|
impbii |
⊢ ( ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) |
112 |
|
eliun |
⊢ ( 𝑛 ∈ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ↔ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) |
113 |
112
|
rexbii |
⊢ ( ∃ 𝑚 ∈ ℕ 𝑛 ∈ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔 ‘ 𝑙 ) ) |
114 |
111 113
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) ↔ ∃ 𝑚 ∈ ℕ 𝑛 ∈ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) |
115 |
114
|
abbii |
⊢ { 𝑛 ∣ ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔 ‘ 𝑥 ) } = { 𝑛 ∣ ∃ 𝑚 ∈ ℕ 𝑛 ∈ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) } |
116 |
94 115
|
eqtri |
⊢ ∪ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = { 𝑛 ∣ ∃ 𝑚 ∈ ℕ 𝑛 ∈ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) } |
117 |
|
df-iun |
⊢ ∪ 𝑚 ∈ ℕ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) = { 𝑛 ∣ ∃ 𝑚 ∈ ℕ 𝑛 ∈ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) } |
118 |
|
ovex |
⊢ ( 1 ... 𝑚 ) ∈ V |
119 |
118 64
|
iunex |
⊢ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ∈ V |
120 |
119
|
dfiun3 |
⊢ ∪ 𝑚 ∈ ℕ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) = ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) |
121 |
116 117 120
|
3eqtr2i |
⊢ ∪ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) |
122 |
|
fofn |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → 𝑔 Fn ℕ ) |
123 |
|
fniunfv |
⊢ ( 𝑔 Fn ℕ → ∪ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = ∪ ran 𝑔 ) |
124 |
122 123
|
syl |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = ∪ ran 𝑔 ) |
125 |
|
forn |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ran 𝑔 = 𝐴 ) |
126 |
125
|
unieqd |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ ran 𝑔 = ∪ 𝐴 ) |
127 |
124 126
|
eqtrd |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = ∪ 𝐴 ) |
128 |
121 127
|
eqtr3id |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = ∪ 𝐴 ) |
129 |
128
|
fveq2d |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol ‘ ∪ 𝐴 ) ) |
130 |
129
|
adantr |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol ‘ ∪ 𝐴 ) ) |
131 |
|
rnco2 |
⊢ ran ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
132 |
|
eqidd |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
133 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
134 |
133
|
a1i |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
135 |
134
|
feqmptd |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → vol = ( 𝑛 ∈ dom vol ↦ ( vol ‘ 𝑛 ) ) ) |
136 |
|
fveq2 |
⊢ ( 𝑛 = ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) → ( vol ‘ 𝑛 ) = ( vol ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
137 |
55 132 135 136
|
fmptco |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ) |
138 |
|
mblvol |
⊢ ( ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ∈ dom vol → ( vol ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
139 |
55 138
|
syl |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
140 |
|
mblss |
⊢ ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ ) |
141 |
140
|
adantr |
⊢ ( ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → 𝑥 ⊆ ℝ ) |
142 |
26
|
eqeq1d |
⊢ ( 𝑥 ∈ dom vol → ( ( vol ‘ 𝑥 ) = 0 ↔ ( vol* ‘ 𝑥 ) = 0 ) ) |
143 |
|
0re |
⊢ 0 ∈ ℝ |
144 |
|
eleq1a |
⊢ ( 0 ∈ ℝ → ( ( vol* ‘ 𝑥 ) = 0 → ( vol* ‘ 𝑥 ) ∈ ℝ ) ) |
145 |
143 144
|
ax-mp |
⊢ ( ( vol* ‘ 𝑥 ) = 0 → ( vol* ‘ 𝑥 ) ∈ ℝ ) |
146 |
142 145
|
syl6bi |
⊢ ( 𝑥 ∈ dom vol → ( ( vol ‘ 𝑥 ) = 0 → ( vol* ‘ 𝑥 ) ∈ ℝ ) ) |
147 |
146
|
imp |
⊢ ( ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) |
148 |
141 147
|
jca |
⊢ ( ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) |
149 |
148
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) |
150 |
149
|
adantl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) |
151 |
|
ssid |
⊢ ℕ ⊆ ℕ |
152 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑙 ) → ( 𝑥 ⊆ ℝ ↔ ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ) ) |
153 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑙 ) → ( vol* ‘ 𝑥 ) = ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ) |
154 |
153
|
eleq1d |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑙 ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ ↔ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ) |
155 |
152 154
|
anbi12d |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑙 ) → ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ) ) |
156 |
155
|
ralima |
⊢ ( ( 𝑔 Fn ℕ ∧ ℕ ⊆ ℕ ) → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ↔ ∀ 𝑙 ∈ ℕ ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ) ) |
157 |
122 151 156
|
sylancl |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ↔ ∀ 𝑙 ∈ ℕ ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ) ) |
158 |
|
foima |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( 𝑔 “ ℕ ) = 𝐴 ) |
159 |
158
|
raleqdv |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ) |
160 |
157 159
|
bitr3d |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑙 ∈ ℕ ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ) |
161 |
160
|
adantr |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( ∀ 𝑙 ∈ ℕ ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ) |
162 |
150 161
|
mpbird |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ℕ ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ) |
163 |
|
ssralv |
⊢ ( ( 1 ... 𝑚 ) ⊆ ℕ → ( ∀ 𝑙 ∈ ℕ ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ) ) |
164 |
39 162 163
|
mpsyl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ) |
165 |
164
|
adantr |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ) |
166 |
|
ovolfiniun |
⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ≤ Σ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ) |
167 |
36 165 166
|
sylancr |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ≤ Σ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ) |
168 |
|
mblvol |
⊢ ( ( 𝑔 ‘ 𝑙 ) ∈ dom vol → ( vol ‘ ( 𝑔 ‘ 𝑙 ) ) = ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ) |
169 |
49 168
|
syl |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑙 ∈ ℕ ) → ( vol ‘ ( 𝑔 ‘ 𝑙 ) ) = ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) ) |
170 |
45
|
simprd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ∧ ( 𝑔 ‘ 𝑙 ) ∈ 𝐴 ) → ( vol ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
171 |
41 170
|
sylan2 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ∧ ( 𝑔 : ℕ –onto→ 𝐴 ∧ 𝑙 ∈ ℕ ) ) → ( vol ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
172 |
171
|
ancoms |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ 𝑙 ∈ ℕ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
173 |
172
|
an32s |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑙 ∈ ℕ ) → ( vol ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
174 |
169 173
|
eqtr3d |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑙 ∈ ℕ ) → ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
175 |
174
|
ralrimiva |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ℕ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
176 |
|
ssralv |
⊢ ( ( 1 ... 𝑚 ) ⊆ ℕ → ( ∀ 𝑙 ∈ ℕ ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) ) |
177 |
39 175 176
|
mpsyl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
178 |
177
|
adantr |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
179 |
178
|
sumeq2d |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → Σ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) = Σ 𝑙 ∈ ( 1 ... 𝑚 ) 0 ) |
180 |
36
|
olci |
⊢ ( ( 1 ... 𝑚 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝑚 ) ∈ Fin ) |
181 |
|
sumz |
⊢ ( ( ( 1 ... 𝑚 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝑚 ) ∈ Fin ) → Σ 𝑙 ∈ ( 1 ... 𝑚 ) 0 = 0 ) |
182 |
180 181
|
ax-mp |
⊢ Σ 𝑙 ∈ ( 1 ... 𝑚 ) 0 = 0 |
183 |
179 182
|
eqtrdi |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → Σ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
184 |
167 183
|
breqtrd |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ≤ 0 ) |
185 |
|
mblss |
⊢ ( ( 𝑔 ‘ 𝑙 ) ∈ dom vol → ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ) |
186 |
185
|
ralimi |
⊢ ( ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ∈ dom vol → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ) |
187 |
52 186
|
syl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ) |
188 |
|
iunss |
⊢ ( ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ↔ ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ) |
189 |
187 188
|
sylibr |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ) |
190 |
189
|
adantr |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ⊆ ℝ ) |
191 |
|
ovolge0 |
⊢ ( ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
192 |
190 191
|
syl |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) |
193 |
|
ovolcl |
⊢ ( ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ⊆ ℝ → ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ* ) |
194 |
189 193
|
syl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ* ) |
195 |
194
|
adantr |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ* ) |
196 |
|
0xr |
⊢ 0 ∈ ℝ* |
197 |
|
xrletri3 |
⊢ ( ( ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = 0 ↔ ( ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) |
198 |
195 196 197
|
sylancl |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = 0 ↔ ( ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) ) ) |
199 |
184 192 198
|
mpbir2and |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
200 |
139 199
|
eqtrd |
⊢ ( ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) = 0 ) |
201 |
200
|
mpteq2dva |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( 𝑚 ∈ ℕ ↦ 0 ) ) |
202 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 ) |
203 |
201 202
|
eqtr4di |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( ℕ × { 0 } ) ) |
204 |
137 203
|
eqtrd |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( ℕ × { 0 } ) ) |
205 |
|
frn |
⊢ ( ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) : ℕ ⟶ dom vol → ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ dom vol ) |
206 |
|
ffn |
⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → vol Fn dom vol ) |
207 |
133 206
|
ax-mp |
⊢ vol Fn dom vol |
208 |
119 62
|
fnmpti |
⊢ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) Fn ℕ |
209 |
|
fnco |
⊢ ( ( vol Fn dom vol ∧ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) Fn ℕ ∧ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ dom vol ) → ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) Fn ℕ ) |
210 |
207 208 209
|
mp3an12 |
⊢ ( ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ⊆ dom vol → ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) Fn ℕ ) |
211 |
56 205 210
|
3syl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) Fn ℕ ) |
212 |
|
1nn |
⊢ 1 ∈ ℕ |
213 |
212
|
ne0ii |
⊢ ℕ ≠ ∅ |
214 |
|
fconst5 |
⊢ ( ( ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) Fn ℕ ∧ ℕ ≠ ∅ ) → ( ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( ℕ × { 0 } ) ↔ ran ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = { 0 } ) ) |
215 |
211 213 214
|
sylancl |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = ( ℕ × { 0 } ) ↔ ran ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = { 0 } ) ) |
216 |
204 215
|
mpbid |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ran ( vol ∘ ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = { 0 } ) |
217 |
131 216
|
eqtr3id |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) = { 0 } ) |
218 |
217
|
supeq1d |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) ) |
219 |
|
xrltso |
⊢ < Or ℝ* |
220 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
221 |
219 196 220
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
222 |
218 221
|
eqtrdi |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔 ‘ 𝑙 ) ) ) , ℝ* , < ) = 0 ) |
223 |
93 130 222
|
3eqtr3rd |
⊢ ( ( 𝑔 : ℕ –onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) |
224 |
223
|
ex |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
225 |
35 224
|
syl5 |
⊢ ( 𝑔 : ℕ –onto→ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
226 |
225
|
exlimiv |
⊢ ( ∃ 𝑔 𝑔 : ℕ –onto→ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
227 |
19 226
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
228 |
227
|
expimpd |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) ) |
229 |
12 228
|
pm2.61ine |
⊢ ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ ∪ 𝐴 ) ) |
230 |
|
renepnf |
⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) |
231 |
143 230
|
mp1i |
⊢ ( ∪ 𝐴 = ℝ → 0 ≠ +∞ ) |
232 |
|
fveq2 |
⊢ ( ∪ 𝐴 = ℝ → ( vol ‘ ∪ 𝐴 ) = ( vol ‘ ℝ ) ) |
233 |
|
rembl |
⊢ ℝ ∈ dom vol |
234 |
|
mblvol |
⊢ ( ℝ ∈ dom vol → ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) ) |
235 |
233 234
|
ax-mp |
⊢ ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) |
236 |
|
ovolre |
⊢ ( vol* ‘ ℝ ) = +∞ |
237 |
235 236
|
eqtri |
⊢ ( vol ‘ ℝ ) = +∞ |
238 |
232 237
|
eqtrdi |
⊢ ( ∪ 𝐴 = ℝ → ( vol ‘ ∪ 𝐴 ) = +∞ ) |
239 |
231 238
|
neeqtrrd |
⊢ ( ∪ 𝐴 = ℝ → 0 ≠ ( vol ‘ ∪ 𝐴 ) ) |
240 |
239
|
necon2i |
⊢ ( 0 = ( vol ‘ ∪ 𝐴 ) → ∪ 𝐴 ≠ ℝ ) |
241 |
229 240
|
syl |
⊢ ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴 ⊆ ℝ ) ) → ∪ 𝐴 ≠ ℝ ) |
242 |
241
|
expr |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ( ∪ 𝐴 ⊆ ℝ → ∪ 𝐴 ≠ ℝ ) ) |
243 |
|
eqimss |
⊢ ( ∪ 𝐴 = ℝ → ∪ 𝐴 ⊆ ℝ ) |
244 |
243
|
necon3bi |
⊢ ( ¬ ∪ 𝐴 ⊆ ℝ → ∪ 𝐴 ≠ ℝ ) |
245 |
242 244
|
pm2.61d1 |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ℕ ) → ∪ 𝐴 ≠ ℝ ) |