Metamath Proof Explorer


Theorem volsupnfl

Description: volsup is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 2-Jan-2018)

Ref Expression
Hypothesis volsupnfl.0 ( ( 𝑓 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ran 𝑓 ) = sup ( ( vol “ ran 𝑓 ) , ℝ* , < ) )
Assertion volsupnfl ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → 𝐴 ≠ ℝ )

Proof

Step Hyp Ref Expression
1 volsupnfl.0 ( ( 𝑓 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ran 𝑓 ) = sup ( ( vol “ ran 𝑓 ) , ℝ* , < ) )
2 unieq ( 𝐴 = ∅ → 𝐴 = ∅ )
3 uni0 ∅ = ∅
4 2 3 eqtrdi ( 𝐴 = ∅ → 𝐴 = ∅ )
5 4 fveq2d ( 𝐴 = ∅ → ( vol ‘ 𝐴 ) = ( vol ‘ ∅ ) )
6 0mbl ∅ ∈ dom vol
7 mblvol ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) )
8 6 7 ax-mp ( vol ‘ ∅ ) = ( vol* ‘ ∅ )
9 ovol0 ( vol* ‘ ∅ ) = 0
10 8 9 eqtri ( vol ‘ ∅ ) = 0
11 5 10 eqtr2di ( 𝐴 = ∅ → 0 = ( vol ‘ 𝐴 ) )
12 11 a1d ( 𝐴 = ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ 𝐴 ) ) )
13 reldom Rel ≼
14 13 brrelex1i ( 𝐴 ≼ ℕ → 𝐴 ∈ V )
15 0sdomg ( 𝐴 ∈ V → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
16 14 15 syl ( 𝐴 ≼ ℕ → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
17 16 biimparc ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∅ ≺ 𝐴 )
18 fodomr ( ( ∅ ≺ 𝐴𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto𝐴 )
19 17 18 sylancom ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto𝐴 )
20 unissb ( 𝐴 ⊆ ℝ ↔ ∀ 𝑥𝐴 𝑥 ⊆ ℝ )
21 20 anbi1i ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) )
22 r19.26 ( ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) ↔ ( ∀ 𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) )
23 21 22 bitr4i ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) ↔ ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) )
24 ovolctb2 ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( vol* ‘ 𝑥 ) = 0 )
25 nulmbl ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → 𝑥 ∈ dom vol )
26 mblvol ( 𝑥 ∈ dom vol → ( vol ‘ 𝑥 ) = ( vol* ‘ 𝑥 ) )
27 eqtr ( ( ( vol ‘ 𝑥 ) = ( vol* ‘ 𝑥 ) ∧ ( vol* ‘ 𝑥 ) = 0 ) → ( vol ‘ 𝑥 ) = 0 )
28 27 expcom ( ( vol* ‘ 𝑥 ) = 0 → ( ( vol ‘ 𝑥 ) = ( vol* ‘ 𝑥 ) → ( vol ‘ 𝑥 ) = 0 ) )
29 26 28 syl5 ( ( vol* ‘ 𝑥 ) = 0 → ( 𝑥 ∈ dom vol → ( vol ‘ 𝑥 ) = 0 ) )
30 29 adantl ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → ( 𝑥 ∈ dom vol → ( vol ‘ 𝑥 ) = 0 ) )
31 25 30 jcai ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) = 0 ) → ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) )
32 24 31 syldan ( ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) )
33 32 ralimi ( ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ ) → ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) )
34 23 33 sylbi ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) )
35 34 ancoms ( ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) → ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) )
36 fzfi ( 1 ... 𝑚 ) ∈ Fin
37 fzssuz ( 1 ... 𝑚 ) ⊆ ( ℤ ‘ 1 )
38 nnuz ℕ = ( ℤ ‘ 1 )
39 37 38 sseqtrri ( 1 ... 𝑚 ) ⊆ ℕ
40 fof ( 𝑔 : ℕ –onto𝐴𝑔 : ℕ ⟶ 𝐴 )
41 40 ffvelrnda ( ( 𝑔 : ℕ –onto𝐴𝑙 ∈ ℕ ) → ( 𝑔𝑙 ) ∈ 𝐴 )
42 eleq1 ( 𝑥 = ( 𝑔𝑙 ) → ( 𝑥 ∈ dom vol ↔ ( 𝑔𝑙 ) ∈ dom vol ) )
43 fveqeq2 ( 𝑥 = ( 𝑔𝑙 ) → ( ( vol ‘ 𝑥 ) = 0 ↔ ( vol ‘ ( 𝑔𝑙 ) ) = 0 ) )
44 42 43 anbi12d ( 𝑥 = ( 𝑔𝑙 ) → ( ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑔𝑙 ) ∈ dom vol ∧ ( vol ‘ ( 𝑔𝑙 ) ) = 0 ) ) )
45 44 rspccva ( ( ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ∧ ( 𝑔𝑙 ) ∈ 𝐴 ) → ( ( 𝑔𝑙 ) ∈ dom vol ∧ ( vol ‘ ( 𝑔𝑙 ) ) = 0 ) )
46 45 simpld ( ( ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ∧ ( 𝑔𝑙 ) ∈ 𝐴 ) → ( 𝑔𝑙 ) ∈ dom vol )
47 46 ancoms ( ( ( 𝑔𝑙 ) ∈ 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑔𝑙 ) ∈ dom vol )
48 41 47 sylan ( ( ( 𝑔 : ℕ –onto𝐴𝑙 ∈ ℕ ) ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑔𝑙 ) ∈ dom vol )
49 48 an32s ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑙 ∈ ℕ ) → ( 𝑔𝑙 ) ∈ dom vol )
50 49 ralrimiva ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ℕ ( 𝑔𝑙 ) ∈ dom vol )
51 ssralv ( ( 1 ... 𝑚 ) ⊆ ℕ → ( ∀ 𝑙 ∈ ℕ ( 𝑔𝑙 ) ∈ dom vol → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ∈ dom vol ) )
52 39 50 51 mpsyl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ∈ dom vol )
53 finiunmbl ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ∈ dom vol ) → 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ∈ dom vol )
54 36 52 53 sylancr ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ∈ dom vol )
55 54 adantr ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ∈ dom vol )
56 55 fmpttd ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) : ℕ ⟶ dom vol )
57 fzssp1 ( 1 ... 𝑛 ) ⊆ ( 1 ... ( 𝑛 + 1 ) )
58 iunss1 ( ( 1 ... 𝑛 ) ⊆ ( 1 ... ( 𝑛 + 1 ) ) → 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔𝑙 ) ⊆ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔𝑙 ) )
59 57 58 ax-mp 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔𝑙 ) ⊆ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔𝑙 )
60 oveq2 ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) )
61 60 iuneq1d ( 𝑚 = 𝑛 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) = 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔𝑙 ) )
62 eqid ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) )
63 ovex ( 1 ... 𝑛 ) ∈ V
64 fvex ( 𝑔𝑙 ) ∈ V
65 63 64 iunex 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔𝑙 ) ∈ V
66 61 62 65 fvmpt ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) = 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔𝑙 ) )
67 peano2nn ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ )
68 oveq2 ( 𝑚 = ( 𝑛 + 1 ) → ( 1 ... 𝑚 ) = ( 1 ... ( 𝑛 + 1 ) ) )
69 68 iuneq1d ( 𝑚 = ( 𝑛 + 1 ) → 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) = 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔𝑙 ) )
70 ovex ( 1 ... ( 𝑛 + 1 ) ) ∈ V
71 70 64 iunex 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔𝑙 ) ∈ V
72 69 62 71 fvmpt ( ( 𝑛 + 1 ) ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) = 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔𝑙 ) )
73 67 72 syl ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) = 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔𝑙 ) )
74 66 73 sseq12d ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ↔ 𝑙 ∈ ( 1 ... 𝑛 ) ( 𝑔𝑙 ) ⊆ 𝑙 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑔𝑙 ) ) )
75 59 74 mpbiri ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) )
76 75 rgen 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) )
77 nnex ℕ ∈ V
78 77 mptex ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ∈ V
79 feq1 ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( 𝑓 : ℕ ⟶ dom vol ↔ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) : ℕ ⟶ dom vol ) )
80 fveq1 ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( 𝑓𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) )
81 fveq1 ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( 𝑓 ‘ ( 𝑛 + 1 ) ) = ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) )
82 80 81 sseq12d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( ( 𝑓𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ↔ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) )
83 82 ralbidv ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) )
84 79 83 anbi12d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( ( 𝑓 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) ) )
85 rneq ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ran 𝑓 = ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) )
86 85 unieqd ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ran 𝑓 = ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) )
87 86 fveq2d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( vol ‘ ran 𝑓 ) = ( vol ‘ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) )
88 85 imaeq2d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( vol “ ran 𝑓 ) = ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) )
89 88 supeq1d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → sup ( ( vol “ ran 𝑓 ) , ℝ* , < ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) , ℝ* , < ) )
90 87 89 eqeq12d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( ( vol ‘ ran 𝑓 ) = sup ( ( vol “ ran 𝑓 ) , ℝ* , < ) ↔ ( vol ‘ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) , ℝ* , < ) ) )
91 84 90 imbi12d ( 𝑓 = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) → ( ( ( 𝑓 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ⊆ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ran 𝑓 ) = sup ( ( vol “ ran 𝑓 ) , ℝ* , < ) ) ↔ ( ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) , ℝ* , < ) ) ) )
92 78 91 1 vtocl ( ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) , ℝ* , < ) )
93 56 76 92 sylancl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ‘ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) , ℝ* , < ) )
94 df-iun 𝑥 ∈ ℕ ( 𝑔𝑥 ) = { 𝑛 ∣ ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔𝑥 ) }
95 eluzfz2 ( 𝑥 ∈ ( ℤ ‘ 1 ) → 𝑥 ∈ ( 1 ... 𝑥 ) )
96 95 38 eleq2s ( 𝑥 ∈ ℕ → 𝑥 ∈ ( 1 ... 𝑥 ) )
97 fveq2 ( 𝑙 = 𝑥 → ( 𝑔𝑙 ) = ( 𝑔𝑥 ) )
98 97 eleq2d ( 𝑙 = 𝑥 → ( 𝑛 ∈ ( 𝑔𝑙 ) ↔ 𝑛 ∈ ( 𝑔𝑥 ) ) )
99 98 rspcev ( ( 𝑥 ∈ ( 1 ... 𝑥 ) ∧ 𝑛 ∈ ( 𝑔𝑥 ) ) → ∃ 𝑙 ∈ ( 1 ... 𝑥 ) 𝑛 ∈ ( 𝑔𝑙 ) )
100 96 99 sylan ( ( 𝑥 ∈ ℕ ∧ 𝑛 ∈ ( 𝑔𝑥 ) ) → ∃ 𝑙 ∈ ( 1 ... 𝑥 ) 𝑛 ∈ ( 𝑔𝑙 ) )
101 oveq2 ( 𝑚 = 𝑥 → ( 1 ... 𝑚 ) = ( 1 ... 𝑥 ) )
102 101 rexeqdv ( 𝑚 = 𝑥 → ( ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) ↔ ∃ 𝑙 ∈ ( 1 ... 𝑥 ) 𝑛 ∈ ( 𝑔𝑙 ) ) )
103 102 rspcev ( ( 𝑥 ∈ ℕ ∧ ∃ 𝑙 ∈ ( 1 ... 𝑥 ) 𝑛 ∈ ( 𝑔𝑙 ) ) → ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) )
104 100 103 syldan ( ( 𝑥 ∈ ℕ ∧ 𝑛 ∈ ( 𝑔𝑥 ) ) → ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) )
105 104 rexlimiva ( ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔𝑥 ) → ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) )
106 ssrexv ( ( 1 ... 𝑚 ) ⊆ ℕ → ( ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) → ∃ 𝑙 ∈ ℕ 𝑛 ∈ ( 𝑔𝑙 ) ) )
107 39 106 ax-mp ( ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) → ∃ 𝑙 ∈ ℕ 𝑛 ∈ ( 𝑔𝑙 ) )
108 98 cbvrexvw ( ∃ 𝑙 ∈ ℕ 𝑛 ∈ ( 𝑔𝑙 ) ↔ ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔𝑥 ) )
109 107 108 sylib ( ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) → ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔𝑥 ) )
110 109 rexlimivw ( ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) → ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔𝑥 ) )
111 105 110 impbii ( ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔𝑥 ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) )
112 eliun ( 𝑛 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ↔ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) )
113 112 rexbii ( ∃ 𝑚 ∈ ℕ 𝑛 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑙 ∈ ( 1 ... 𝑚 ) 𝑛 ∈ ( 𝑔𝑙 ) )
114 111 113 bitr4i ( ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔𝑥 ) ↔ ∃ 𝑚 ∈ ℕ 𝑛 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) )
115 114 abbii { 𝑛 ∣ ∃ 𝑥 ∈ ℕ 𝑛 ∈ ( 𝑔𝑥 ) } = { 𝑛 ∣ ∃ 𝑚 ∈ ℕ 𝑛 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) }
116 94 115 eqtri 𝑥 ∈ ℕ ( 𝑔𝑥 ) = { 𝑛 ∣ ∃ 𝑚 ∈ ℕ 𝑛 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) }
117 df-iun 𝑚 ∈ ℕ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) = { 𝑛 ∣ ∃ 𝑚 ∈ ℕ 𝑛 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) }
118 ovex ( 1 ... 𝑚 ) ∈ V
119 118 64 iunex 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ∈ V
120 119 dfiun3 𝑚 ∈ ℕ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) = ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) )
121 116 117 120 3eqtr2i 𝑥 ∈ ℕ ( 𝑔𝑥 ) = ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) )
122 fofn ( 𝑔 : ℕ –onto𝐴𝑔 Fn ℕ )
123 fniunfv ( 𝑔 Fn ℕ → 𝑥 ∈ ℕ ( 𝑔𝑥 ) = ran 𝑔 )
124 122 123 syl ( 𝑔 : ℕ –onto𝐴 𝑥 ∈ ℕ ( 𝑔𝑥 ) = ran 𝑔 )
125 forn ( 𝑔 : ℕ –onto𝐴 → ran 𝑔 = 𝐴 )
126 125 unieqd ( 𝑔 : ℕ –onto𝐴 ran 𝑔 = 𝐴 )
127 124 126 eqtrd ( 𝑔 : ℕ –onto𝐴 𝑥 ∈ ℕ ( 𝑔𝑥 ) = 𝐴 )
128 121 127 eqtr3id ( 𝑔 : ℕ –onto𝐴 ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) = 𝐴 )
129 128 fveq2d ( 𝑔 : ℕ –onto𝐴 → ( vol ‘ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = ( vol ‘ 𝐴 ) )
130 129 adantr ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ‘ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = ( vol ‘ 𝐴 ) )
131 rnco2 ran ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) )
132 eqidd ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) = ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) )
133 volf vol : dom vol ⟶ ( 0 [,] +∞ )
134 133 a1i ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → vol : dom vol ⟶ ( 0 [,] +∞ ) )
135 134 feqmptd ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → vol = ( 𝑛 ∈ dom vol ↦ ( vol ‘ 𝑛 ) ) )
136 fveq2 ( 𝑛 = 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) → ( vol ‘ 𝑛 ) = ( vol ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) )
137 55 132 135 136 fmptco ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) )
138 mblvol ( 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ∈ dom vol → ( vol ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) = ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) )
139 55 138 syl ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) = ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) )
140 mblss ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ )
141 140 adantr ( ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → 𝑥 ⊆ ℝ )
142 26 eqeq1d ( 𝑥 ∈ dom vol → ( ( vol ‘ 𝑥 ) = 0 ↔ ( vol* ‘ 𝑥 ) = 0 ) )
143 0re 0 ∈ ℝ
144 eleq1a ( 0 ∈ ℝ → ( ( vol* ‘ 𝑥 ) = 0 → ( vol* ‘ 𝑥 ) ∈ ℝ ) )
145 143 144 ax-mp ( ( vol* ‘ 𝑥 ) = 0 → ( vol* ‘ 𝑥 ) ∈ ℝ )
146 142 145 syl6bi ( 𝑥 ∈ dom vol → ( ( vol ‘ 𝑥 ) = 0 → ( vol* ‘ 𝑥 ) ∈ ℝ ) )
147 146 imp ( ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → ( vol* ‘ 𝑥 ) ∈ ℝ )
148 141 147 jca ( ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) )
149 148 ralimi ( ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) )
150 149 adantl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) )
151 ssid ℕ ⊆ ℕ
152 sseq1 ( 𝑥 = ( 𝑔𝑙 ) → ( 𝑥 ⊆ ℝ ↔ ( 𝑔𝑙 ) ⊆ ℝ ) )
153 fveq2 ( 𝑥 = ( 𝑔𝑙 ) → ( vol* ‘ 𝑥 ) = ( vol* ‘ ( 𝑔𝑙 ) ) )
154 153 eleq1d ( 𝑥 = ( 𝑔𝑙 ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ ↔ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) )
155 152 154 anbi12d ( 𝑥 = ( 𝑔𝑙 ) → ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) ) )
156 155 ralima ( ( 𝑔 Fn ℕ ∧ ℕ ⊆ ℕ ) → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ↔ ∀ 𝑙 ∈ ℕ ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) ) )
157 122 151 156 sylancl ( 𝑔 : ℕ –onto𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ↔ ∀ 𝑙 ∈ ℕ ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) ) )
158 foima ( 𝑔 : ℕ –onto𝐴 → ( 𝑔 “ ℕ ) = 𝐴 )
159 158 raleqdv ( 𝑔 : ℕ –onto𝐴 → ( ∀ 𝑥 ∈ ( 𝑔 “ ℕ ) ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ↔ ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) )
160 157 159 bitr3d ( 𝑔 : ℕ –onto𝐴 → ( ∀ 𝑙 ∈ ℕ ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) ↔ ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) )
161 160 adantr ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( ∀ 𝑙 ∈ ℕ ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) ↔ ∀ 𝑥𝐴 ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) )
162 150 161 mpbird ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ℕ ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) )
163 ssralv ( ( 1 ... 𝑚 ) ⊆ ℕ → ( ∀ 𝑙 ∈ ℕ ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) ) )
164 39 162 163 mpsyl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) )
165 164 adantr ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) )
166 ovolfiniun ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( ( 𝑔𝑙 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑔𝑙 ) ) ∈ ℝ ) ) → ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ≤ Σ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔𝑙 ) ) )
167 36 165 166 sylancr ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ≤ Σ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔𝑙 ) ) )
168 mblvol ( ( 𝑔𝑙 ) ∈ dom vol → ( vol ‘ ( 𝑔𝑙 ) ) = ( vol* ‘ ( 𝑔𝑙 ) ) )
169 49 168 syl ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑙 ∈ ℕ ) → ( vol ‘ ( 𝑔𝑙 ) ) = ( vol* ‘ ( 𝑔𝑙 ) ) )
170 45 simprd ( ( ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ∧ ( 𝑔𝑙 ) ∈ 𝐴 ) → ( vol ‘ ( 𝑔𝑙 ) ) = 0 )
171 41 170 sylan2 ( ( ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ∧ ( 𝑔 : ℕ –onto𝐴𝑙 ∈ ℕ ) ) → ( vol ‘ ( 𝑔𝑙 ) ) = 0 )
172 171 ancoms ( ( ( 𝑔 : ℕ –onto𝐴𝑙 ∈ ℕ ) ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ‘ ( 𝑔𝑙 ) ) = 0 )
173 172 an32s ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑙 ∈ ℕ ) → ( vol ‘ ( 𝑔𝑙 ) ) = 0 )
174 169 173 eqtr3d ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑙 ∈ ℕ ) → ( vol* ‘ ( 𝑔𝑙 ) ) = 0 )
175 174 ralrimiva ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ℕ ( vol* ‘ ( 𝑔𝑙 ) ) = 0 )
176 ssralv ( ( 1 ... 𝑚 ) ⊆ ℕ → ( ∀ 𝑙 ∈ ℕ ( vol* ‘ ( 𝑔𝑙 ) ) = 0 → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔𝑙 ) ) = 0 ) )
177 39 175 176 mpsyl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔𝑙 ) ) = 0 )
178 177 adantr ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔𝑙 ) ) = 0 )
179 178 sumeq2d ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → Σ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔𝑙 ) ) = Σ 𝑙 ∈ ( 1 ... 𝑚 ) 0 )
180 36 olci ( ( 1 ... 𝑚 ) ⊆ ( ℤ ‘ 1 ) ∨ ( 1 ... 𝑚 ) ∈ Fin )
181 sumz ( ( ( 1 ... 𝑚 ) ⊆ ( ℤ ‘ 1 ) ∨ ( 1 ... 𝑚 ) ∈ Fin ) → Σ 𝑙 ∈ ( 1 ... 𝑚 ) 0 = 0 )
182 180 181 ax-mp Σ 𝑙 ∈ ( 1 ... 𝑚 ) 0 = 0
183 179 182 eqtrdi ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → Σ 𝑙 ∈ ( 1 ... 𝑚 ) ( vol* ‘ ( 𝑔𝑙 ) ) = 0 )
184 167 183 breqtrd ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ≤ 0 )
185 mblss ( ( 𝑔𝑙 ) ∈ dom vol → ( 𝑔𝑙 ) ⊆ ℝ )
186 185 ralimi ( ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ∈ dom vol → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ⊆ ℝ )
187 52 186 syl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ⊆ ℝ )
188 iunss ( 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ⊆ ℝ ↔ ∀ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ⊆ ℝ )
189 187 188 sylibr ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ⊆ ℝ )
190 189 adantr ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ⊆ ℝ )
191 ovolge0 ( 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ⊆ ℝ → 0 ≤ ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) )
192 190 191 syl ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) )
193 ovolcl ( 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ⊆ ℝ → ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ∈ ℝ* )
194 189 193 syl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ∈ ℝ* )
195 194 adantr ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ∈ ℝ* )
196 0xr 0 ∈ ℝ*
197 xrletri3 ( ( ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) = 0 ↔ ( ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) ) )
198 195 196 197 sylancl ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) = 0 ↔ ( ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) ) )
199 184 192 198 mpbir2and ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) = 0 )
200 139 199 eqtrd ( ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) = 0 )
201 200 mpteq2dva ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = ( 𝑚 ∈ ℕ ↦ 0 ) )
202 fconstmpt ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 )
203 201 202 eqtr4di ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = ( ℕ × { 0 } ) )
204 137 203 eqtrd ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = ( ℕ × { 0 } ) )
205 frn ( ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) : ℕ ⟶ dom vol → ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ⊆ dom vol )
206 ffn ( vol : dom vol ⟶ ( 0 [,] +∞ ) → vol Fn dom vol )
207 133 206 ax-mp vol Fn dom vol
208 119 62 fnmpti ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) Fn ℕ
209 fnco ( ( vol Fn dom vol ∧ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) Fn ℕ ∧ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ⊆ dom vol ) → ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) Fn ℕ )
210 207 208 209 mp3an12 ( ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ⊆ dom vol → ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) Fn ℕ )
211 56 205 210 3syl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) Fn ℕ )
212 1nn 1 ∈ ℕ
213 212 ne0ii ℕ ≠ ∅
214 fconst5 ( ( ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) Fn ℕ ∧ ℕ ≠ ∅ ) → ( ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = ( ℕ × { 0 } ) ↔ ran ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = { 0 } ) )
215 211 213 214 sylancl ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = ( ℕ × { 0 } ) ↔ ran ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = { 0 } ) )
216 204 215 mpbid ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ran ( vol ∘ ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = { 0 } )
217 131 216 eqtr3id ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) = { 0 } )
218 217 supeq1d ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) )
219 xrltso < Or ℝ*
220 supsn ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 )
221 219 196 220 mp2an sup ( { 0 } , ℝ* , < ) = 0
222 218 221 eqtrdi ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ 𝑙 ∈ ( 1 ... 𝑚 ) ( 𝑔𝑙 ) ) ) , ℝ* , < ) = 0 )
223 93 130 222 3eqtr3rd ( ( 𝑔 : ℕ –onto𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) ) → 0 = ( vol ‘ 𝐴 ) )
224 223 ex ( 𝑔 : ℕ –onto𝐴 → ( ∀ 𝑥𝐴 ( 𝑥 ∈ dom vol ∧ ( vol ‘ 𝑥 ) = 0 ) → 0 = ( vol ‘ 𝐴 ) ) )
225 35 224 syl5 ( 𝑔 : ℕ –onto𝐴 → ( ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ 𝐴 ) ) )
226 225 exlimiv ( ∃ 𝑔 𝑔 : ℕ –onto𝐴 → ( ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ 𝐴 ) ) )
227 19 226 syl ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ ) → ( ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) → 0 = ( vol ‘ 𝐴 ) ) )
228 227 expimpd ( 𝐴 ≠ ∅ → ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ 𝐴 ) ) )
229 12 228 pm2.61ine ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) ) → 0 = ( vol ‘ 𝐴 ) )
230 renepnf ( 0 ∈ ℝ → 0 ≠ +∞ )
231 143 230 mp1i ( 𝐴 = ℝ → 0 ≠ +∞ )
232 fveq2 ( 𝐴 = ℝ → ( vol ‘ 𝐴 ) = ( vol ‘ ℝ ) )
233 rembl ℝ ∈ dom vol
234 mblvol ( ℝ ∈ dom vol → ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) )
235 233 234 ax-mp ( vol ‘ ℝ ) = ( vol* ‘ ℝ )
236 ovolre ( vol* ‘ ℝ ) = +∞
237 235 236 eqtri ( vol ‘ ℝ ) = +∞
238 232 237 eqtrdi ( 𝐴 = ℝ → ( vol ‘ 𝐴 ) = +∞ )
239 231 238 neeqtrrd ( 𝐴 = ℝ → 0 ≠ ( vol ‘ 𝐴 ) )
240 239 necon2i ( 0 = ( vol ‘ 𝐴 ) → 𝐴 ≠ ℝ )
241 229 240 syl ( ( 𝐴 ≼ ℕ ∧ ( ∀ 𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ ) ) → 𝐴 ≠ ℝ )
242 241 expr ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ ) )
243 eqimss ( 𝐴 = ℝ → 𝐴 ⊆ ℝ )
244 243 necon3bi ( ¬ 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ )
245 242 244 pm2.61d1 ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑥𝐴 𝑥 ≼ ℕ ) → 𝐴 ≠ ℝ )